SwinTransformer模型转化:pytorch模型转keras。

“”"

def init(self, dim, num_heads, window_size=7, shift_size=0,

mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., name=None):

super().init(name=name)

self.dim = dim

self.num_heads = num_heads

self.window_size = window_size

self.shift_size = shift_size

self.mlp_ratio = mlp_ratio

assert 0 <= self.shift_size < self.window_size, “shift_size must in 0-window_size”

self.norm1 = layers.LayerNormalization(epsilon=1e-6, name=“norm1”)

self.attn = WindowAttention(dim,

window_size=(window_size, window_size),

num_heads=num_heads,

qkv_bias=qkv_bias,

attn_drop_ratio=attn_drop,

proj_drop_ratio=drop,

name=“attn”)

self.drop_path = layers.Dropout(rate=drop_path, noise_shape=(None, 1, 1)) if drop_path > 0. \

else layers.Activation(“linear”)

self.norm2 = layers.LayerNormalization(epsilon=1e-6, name=“norm2”)

self.mlp = MLP(dim, drop=drop, name=“mlp”)

def call(self, x, attn_mask, training=None):

H, W = self.H, self.W

B, L, C = x.shape

assert L == H * W, “input feature has wrong size”

shortcut = x

x = self.norm1(x)

x = tf.reshape(x, [B, H, W, C])

pad feature maps to multiples of window size

把feature map给pad到window size的整数倍

pad_r = (self.window_size - W % self.window_size) % self.window_size

pad_b = (self.window_size - H % self.window_size) % self.window_size

if pad_r > 0 or pad_b > 0:

paddings = tf.constant([[0, 0],

[0, pad_r],

[0, pad_b],

[0, 0]])

x = tf.pad(x, paddings)

_, Hp, Wp, _ = x.shape

cyclic shift

if self.shift_size > 0:

shifted_x = tf.roll(x, shift=(-self.shift_size, -self.shift_size), axis=(1, 2))

else:

shifted_x = x

attn_mask = None

partition windows

x_windows = window_partition(shifted_x, self.window_size) # [nW*B, Mh, Mw, C]

x_windows = tf.reshape(x_windows, [-1, self.window_size * self.window_size, C]) # [nWB, MhMw, C]

W-MSA/SW-MSA

attn_windows = self.attn(x_windows, mask=attn_mask, training=training) # [nWB, MhMw, C]

merge windows

attn_windows = tf.reshape(attn_windows,

[-1, self.window_size, self.window_size, C]) # [nW*B, Mh, Mw, C]

shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # [B, H’, W’, C]

reverse cyclic shift

if self.shift_size > 0:

x = tf.roll(shifted_x, shift=(self.shift_size, self.shift_size), axis=(1, 2))

else:

x = shifted_x

if pad_r > 0 or pad_b > 0:

把前面pad的数据移除掉

x = tf.slice(x, begin=[0, 0, 0, 0], size=[B, H, W, C])

x = tf.reshape(x, [B, H * W, C])

FFN

x = shortcut + self.drop_path(x, training=training)

x = x + self.drop_path(self.mlp(self.norm2(x)), training=training)

return x

class BasicLayer(layers.Layer):

“”"

A basic Swin Transformer layer for one stage.

Args:

dim (int): Number of input channels.

depth (int): Number of blocks.

num_heads (int): Number of attention heads.

window_size (int): Local window size.

mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.

qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True

drop (float, optional): Dropout rate. Default: 0.0

attn_drop (float, optional): Attention dropout rate. Default: 0.0

drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0

downsample (layer.Layer | None, optional): Downsample layer at the end of the layer. Default: None

“”"

def init(self, dim, depth, num_heads, window_size,

mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,

drop_path=0., downsample=None, name=None):

super().init(name=name)

self.dim = dim

self.depth = depth

self.window_size = window_size

self.shift_size = window_size // 2

build blocks

self.blocks = [

SwinTransformerBlock(dim=dim,

num_heads=num_heads,

window_size=window_size,

shift_size=0 if (i % 2 == 0) else self.shift_size,

mlp_ratio=mlp_ratio,

qkv_bias=qkv_bias,

drop=drop,

attn_drop=attn_drop,

drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,

name=f"block{i}")

for i in range(depth)

]

patch merging layer

if downsample is not None:

self.downsample = downsample(dim=dim, name=“downsample”)

else:

self.downsample = None

def create_mask(self, H, W):

calculate attention mask for SW-MSA

保证Hp和Wp是window_size的整数倍

Hp = int(np.ceil(H / self.window_size)) * self.window_size

Wp = int(np.ceil(W / self.window_size)) * self.window_size

拥有和feature map一样的通道排列顺序,方便后续window_partition

img_mask = np.zeros([1, Hp, Wp, 1]) # [1, Hp, Wp, 1]

h_slices = (slice(0, -self.window_size),

slice(-self.window_size, -self.shift_size),

slice(-self.shift_size, None))

w_slices = (slice(0, -self.window_size),

slice(-self.window_size, -self.shift_size),

slice(-self.shift_size, None))

cnt = 0

for h in h_slices:

for w in w_slices:

img_mask[:, h, w, :] = cnt

cnt += 1

img_mask = tf.convert_to_tensor(img_mask, dtype=tf.float32)

mask_windows = window_partition(img_mask, self.window_size) # [nW, Mh, Mw, 1]

mask_windows = tf.reshape(mask_windows, [-1, self.window_size * self.window_size]) # [nW, Mh*Mw]

[nW, 1, MhMw] - [nW, MhMw, 1]

attn_mask = tf.expand_dims(mask_windows, 1) - tf.expand_dims(mask_windows, 2)

attn_mask = tf.where(attn_mask != 0, -100.0, attn_mask)

attn_mask = tf.where(attn_mask == 0, 0.0, attn_mask)

return attn_mask

def call(self, x, H, W, training=None):

attn_mask = self.create_mask(H, W) # [nW, MhMw, MhMw]

for blk in self.blocks:

blk.H, blk.W = H, W

x = blk(x, attn_mask, training=training)

if self.downsample is not None:

x = self.downsample(x, H, W)

H, W = (H + 1) // 2, (W + 1) // 2

return x, H, W

class SwinTransformer(Model):

r"“” Swin Transformer

A PyTorch impl of : Swin Transformer: Hierarchical Vision Transformer using Shifted Windows -

https://arxiv.org/pdf/2103.14030

Args:

patch_size (int | tuple(int)): Patch size. Default: 4

num_classes (int): Number of classes for classification head. Default: 1000

embed_dim (int): Patch embedding dimension. Default: 96

depths (tuple(int)): Depth of each Swin Transformer layer.

num_heads (tuple(int)): Number of attention heads in different layers.

window_size (int): Window size. Default: 7

mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4

qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True

drop_rate (float): Dropout rate. Default: 0

attn_drop_rate (float): Attention dropout rate. Default: 0

drop_path_rate (float): Stochastic depth rate. Default: 0.1

norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.

patch_norm (bool): If True, add normalization after patch embedding. Default: True

use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False

“”"

def init(self, patch_size=4, num_classes=1000,

embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24),

window_size=7, mlp_ratio=4., qkv_bias=True,

drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,

norm_layer=layers.LayerNormalization, name=None, **kwargs):

super().init(name=name)

self.num_classes = num_classes

self.num_layers = len(depths)

self.embed_dim = embed_dim

self.mlp_ratio = mlp_ratio

split image into non-overlapping patches

self.patch_embed = PatchEmbed(patch_size=patch_size,

embed_dim=embed_dim,

norm_layer=norm_layer)

self.pos_drop = layers.Dropout(drop_rate)

stochastic depth decay rule

dpr = [x for x in np.linspace(0, drop_path_rate, sum(depths))]

build layers

self.stage_layers = []

for i_layer in range(self.num_layers):

注意这里构建的stage和论文图中有些差异

这里的stage不包含该stage的patch_merging层,包含的是下个stage的

layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),

depth=depths[i_layer],

num_heads=num_heads[i_layer],

window_size=window_size,

mlp_ratio=self.mlp_ratio,

qkv_bias=qkv_bias,

drop=drop_rate,

attn_drop=attn_drop_rate,

drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],

downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,

name=f"layer{i_layer}")

self.stage_layers.append(layer)

self.norm = norm_layer(epsilon=1e-6, name=“norm”)

self.head = layers.Dense(num_classes,

kernel_initializepythonr=initializers.TruncatedNormal(stddev=0.02),

bias_initializer=initializers.Zeros(),

name=“head”)

self.head = layers.Dense(num_classes,

kernel_initializer=initializers.TruncatedNormal(stddev=0.02),

bias_initializer=initializers.Zeros(),

name=“head”)

对应forward

def call(self, x, training=None):

x, H, W = self.patch_embed(x) # x: [B, L, C]

x = self.pos_drop(x, training=training)

for layer in self.stage_layers:

x, H, W = layer(x, H, W, training=training)

x = self.norm(x) # [B, L, C]

x = tf.reduce_mean(x, axis=1)

x = self.head(x)

return x

def swin_tiny_patch4_window7_224(num_classes: int = 1000, **kwargs):

model = SwinTransformer(patch_size=4,

window_size=7,

embed_dim=96,

depths=(2, 2, 6, 2),

num_heads=(3, 6, 12, 24),

num_classes=num_classes,

name=“swin_tiny_patch4_window7”,

**kwargs)

return model

def swin_small_patch4_window7_224(num_classes: int = 1000, **kwargs):

model = SwinTransformer(in_chans=3,

patch_size=4,

window_size=7,

embed_dim=96,

depths=(2, 2, 18, 2),

num_heads=(3, 6, 12, 24),

num_classes=num_classes,

name=“swin_small_patch4_window7”,

**kwargs)

return model

def swin_base_patch4_window7_224(num_classes: int = 1000, **kwargs):

model = SwinTransformer(in_chans=3,

patch_size=4,

window_size=7,

embed_dim=128,

depths=(2, 2, 18, 2),

num_heads=(4, 8, 16, 32),

num_classes=num_classes,

name=“swin_base_patch4_window7”,

**kwargs)

return model

def swin_base_patch4_window12_384(num_classes: int = 1000, **kwargs):

model = SwinTransformer(in_chans=3,

patch_size=4,

window_size=12,

embed_dim=128,

depths=(2, 2, 18, 2),

num_heads=(4, 8, 16, 32),

num_classes=num_classes,

name=“swin_base_patch4_window12”,

**kwargs)

return model

def swin_base_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs):

model = SwinTransformer(in_chans=3,

patch_size=4,

window_size=7,

embed_dim=128,

depths=(2, 2, 18, 2),

num_heads=(4, 8, 16, 32),

num_classes=num_classes,

name=“swin_base_patch4_window7”,

**kwargs)

return model

def swin_base_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs):

model = SwinTransformer(in_chans=3,

patch_size=4,

window_size=12,

embed_dim=128,

depths=(2, 2, 18, 2),

num_heads=(4, 8, 16, 32),

num_classes=num_classes,

name=“swin_base_patch4_window12”,

**kwargs)

return model

def swin_large_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs):

model = SwinTransformer(in_chans=3,

patch_size=4,

window_size=7,

embed_dim=192,

depths=(2, 2, 18, 2),

num_heads=(6, 12, 24, 48),

num_classes=num_classes,

name=“swin_large_patch4_window7”,

**kwargs)

return model

def swin_large_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs):

model = SwinTransformer(in_chans=3,

patch_size=4,

window_size=12,

embed_dim=192,

depths=(2, 2, 18, 2),

num_heads=(6, 12, 24, 48),

num_classes=num_classes,

name=“swin_large_patch4_window12”,

**kwargs)

return model

下载模型,链接:https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth

新建模型转换脚本weight_trans.py,插入代码:

import torch

from model import *

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!

AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算

oL-1712206598700)]

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!

AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算

  • 12
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值