网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
- 程序打包并在Spark平台运行
具体任务要求:
1、利用/diliveryoutput1作为源数据,使用hadoop shell命令查看数据集条数,请将查看命令及结果复制并粘贴至对应报告中。
2、如果仅考虑年、月、日数据,忽略时刻信息,“申请时间”、“创建时间”与“created_at”、“updated_at”是否为重复属性?请编写Spark程序,并在程序中以打印语句输出两对属性对应相等的数据条数。将打印输出结果以及你的结论复制并粘贴至对应报告中。(复制内容需包含打印语句输出结果的上下各 5 行运行日志)。
示例格式:
=两组属性同时相等的数据条数为***条=
结论:“申请时间”、“创建时间”与“created_at”、“updated_at”(是/不是)重复属性。
如果数据相等的比例超过原始数据集的90%,则剔除属性“created_at”与“updated_at”, 并将结果数据集json文件保存至/diliveryoutput2。
package eat
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.{DataFrame, SparkSession}
object two {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder().master("local[6]").appName("two").config("spark.sql.warehouse.dir", "C:/").getOrCreate()
Logger.getLogger("org").setLevel(Level.ERROR)
val datas: DataFrame = spark.read.json("data/output/diliveryoutput1")
// val data: RDD[Row] = datas.rdd
// import spark.implicits._
// val result: RDD[Array[String]] = data.map(_.mkString(",")).map(_.split(","))
// .filter(item => {
// var i = 0
// for (r <- item) {
// if (item.equals("申请时间") == item.equals("created_at") && (item.equals("创建时间") == item.equals("updated_at"))) {
// println(item.toString)
// }
// }
// i != 0
// }
// )
//
// result.foreach(println)
datas.createOrReplaceTempView("time")
// val sql =
// """
// |select * from time where left(`申请时间`,10)= left(created_at,10) and left(`创建时间`,10) = left(updated_at,10)
// |""".stripMargin
//select * from time where left('申请时间',10) = left('created_at',10) && left('创建时间',10) = left('updated_at',10)
// spark.sql(sql).show()
spark.udf.register("match", (time: String) => {
time.substring(0, time.indexOf(" "))
})
val sql =
"""
|select * from time where match(`申请时间`) = match(`创建时间`) and match(`created_at`) = match(`updated_at`)
|""".stripMargin
val num: Long = spark.sql(sql).count()
if (num > datas.count() * 0.9) {
val result: DataFrame = datas.drop("created_at", "updated_at")
// result.write.json("hdfs://192.168.231.100:9000/diliveryoutput2")
result.repartition(1).write.json("data/output/diliveryoutput2")
![img](https://img-blog.csdnimg.cn/img_convert/c33d16b30229e7a1d2f9f9005e63baca.png)
![img](https://img-blog.csdnimg.cn/img_convert/189e62e778cb2c9d692e35cdf81265ba.png)
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**