caffe的基本概念和用途

Caffe(Convolutional Architecture for Fast Feature Embedding)是一个由Berkeley Vision and Learning Center(BVLC)开发的深度学习框架。它尤其擅长于图像分类领域,以速度快、模块化、易于扩展而著称,被广泛应用于学术界和工业界的研究与产品开发中。Caffe通过提供高效的卷积神经网络实现、高度优化的代码库,以及对多种数据格式和硬件(CPU/GPU)的支持,使得深度学习的研究和应用变得更加便捷。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值