Caffe(Convolutional Architecture for Fast Feature Embedding)是一个由Berkeley Vision and Learning Center(BVLC)开发的深度学习框架。它尤其擅长于图像分类领域,以速度快、模块化、易于扩展而著称,被广泛应用于学术界和工业界的研究与产品开发中。Caffe通过提供高效的卷积神经网络实现、高度优化的代码库,以及对多种数据格式和硬件(CPU/GPU)的支持,使得深度学习的研究和应用变得更加便捷。
caffe的基本概念和用途
最新推荐文章于 2025-05-31 16:51:52 发布