- 博客(11)
- 收藏
- 关注
原创 2024-2025秋季学期第十二周调研技能学习——因果推断(2)
首先通过两个例子引入这两个概念。假设你现在生病了。而你正在考虑是不是要吃药哪缓解症状。如果你在吃药后痊愈,这是否意味着吃药对你的病情有影响?而如果你没有吃药,你的病同样也痊愈了呢?这种情况下是否吃药就与痊愈没有很强的因果效应。如果你在吃药后痊愈。但是如果你吃药,你的病情没有任何好转。在这种情况下,吃药与痊愈就有很强的因果效应。用表示结果——是否痊愈,表示痊愈,表示为痊愈;用表示Treatment——是否吃药,表示吃药,表示未吃药。表示如果你吃药,那么会观察到的你吃药后是否痊愈。
2024-12-01 18:49:39
1021
原创 2024-2025秋季学期第十一周调研技能学习——因果推断(1)
更有效的治疗完全取决于问题的因果结构。在情况 1 中,B 更有效。在情况 2 中,A 更有效。没有因果关系,辛普森悖论就无法解决。有了因果关系,这就不是悖论了。病情严重程度(C)同时影响治疗选择(T)和治疗效果(Y),如果不调整,可能得出误导性的结论。通过调整混杂变量(这里是 C),可以更准确地估计治疗的因果效应。在类似医疗实验或政策评估中,必须考虑混杂变量,以避免错误的决策。关于公式的调整,有一个直观的理解方式。当我们用上述模型评估AAA和BBB对死亡率的因果效应时,我们有Pc0。
2024-11-24 20:51:09
830
原创 2024-2025秋季学期第六周调研技能学习
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,能够有效处理包含噪声的数据,通过样本分布的紧密程度决定聚类。两个参数:Eps(邻域半径)、MinPts(聚类最少点数);核心点:邻域内包含至少MinPts个点的点(包括自身);边界点:在核心点邻域内,自身非核心点的点;噪声点:既非核心点,也非边界点。
2024-10-20 21:00:13
1021
原创 2024-2025秋季学期第五周调研技能学习——KNN(K-近邻)算法/K-means算法
KNN算法(K-Nearest Neighbours algorithm,简称KNN)是一种基本分类与回归方法,是最简单的机器学习算法之一。其基本做法是:给定测试实例,基于某种距离度量找出训练集中与其最靠近的K个实例点,然后基于这K个最近邻的信息来进行预测。假设有一组手写数字(0~9)需要识别,在使用KNN算法训练一个模型后,便可以轻松识别手写数所属的数字,并以此逐步提高精确度。距离度量、K值的选择及分类决策规则。距离度量:通常使用曼哈顿距离(类似于棋盘上走格子从一点到另一点)等度量方式。
2024-10-13 16:18:02
1314
原创 2024-2025秋季学期第一周调研技能学习——奇异值分解
给定任意一个m×nm × nm×n矩阵AAA, 存在一个mmm阶正交矩阵UUU, 一个nnn阶正交矩阵VVV, 和m×nm × nm×n矩阵ΣΣΣ使得以下分解成立,AUΣVTΣD000m∗nAUΣVTΣD000m∗nDdiagd1⋅⋅⋅drd1≥d2≥⋅⋅⋅≥dr0.Ddiagd1,⋅⋅⋅,drd1≥。
2024-09-22 20:58:13
1187
原创 第九周调研技能学习
Anaconda是一个用于科学计算的Python发行版,Anaconda支持系统,提供了包管理和环境管理的功能,可以很方便的解决多版本python并存、切换以及各种第三方包安装问题。简而言之,Anaconda实际上可以便捷获取包和对包能够进行管理。Visual Studio Code(简称VS Code)是一个由微软开发的免费、开源的代码编辑器,它支持多种编程语言的语法高亮、智能代码完成、括号匹配、代码缩进、代码片段、代码对比差异、Git 控制等功能。
2024-05-06 13:21:16
1913
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅