概率图模型—因子图

本文介绍了因子图作为一种表示概率模型中变量和因子关系的工具,强调了其与贝叶斯网络的差异,以及如何将贝叶斯网络转化为因子图并进行变量消元以求解边缘概率。内容包括因子图的结构、转换示例和变量消元方法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因子图(Factor Graph)是一种用于表示概率模型中的变量和因子之间关系的图结构。在概率论和统计中,因子通常指的是变量的函数,这些函数用于描述变量之间的依赖关系或概率分布。因子图通过图形化的方式展示了这些变量和因子之间的相互作用,从而提供了一种直观和灵活的工具来理解和分析复杂的概率模型。

在因子图中,变量通常表示为节点,而因子则通过边与这些变量节点相连。这些边表示了因子与变量之间的依赖关系。因子图的一个重要特点是它可以清晰地展示出概率模型中各个部分之间的独立性关系,这有助于简化计算和提高推理效率。

与贝叶斯网络相比,因子图提供了更大的灵活性。贝叶斯网络主要关注于条件概率的表示,而因子图则可以更一般地表示概率分布的分解。因此,在某些情况下,因子图可能更适合用于描述和分析概率模型。

因子图是二部图,包括两类节点:1、所有的变量节点;2、概率分布的每个局部因子对应一个节点。为了区分这两类节点,一般用方形节点表示因子节点(即f_s)。

因子图边的定义规则为:对于同一类节点,它们之间没有边;每个因子节点f_sX_s中的所有变量节点相连。

贝叶斯网络与因子图之间的转化

例一:贝叶斯网络p(x) = p(x_1)p(x_2)p(x_3\mid x_1,x_2)p(x_4\mid x_1,x_3)

其对应的因子图如图所示:

其中f_a(x_1)=p(x_1),f_b(x_2)=p(x_2),f_c(x_3,x_1,x_2)=p(x_3\mid x_1,x_2),f_d(x_4,x_1,x_3)=p(x_4\mid x_1,x_3)

可以看出,因子图是将因子和对应与之相关的变量用边连接起来。

例题:

已知以下贝叶斯网络,包含 7 个变量,即 Season (季节), Flu (流感), Dehydration (脱水), Chills (发冷), Headache (头疼), Nausea (恶心), Dizziness (头晕)。 

(1) 将以上贝叶斯网络用因子图表示,每个变量节点用首字母表示即可(每个节点用变量首

字母表示,脱水和头晕节点分别用 De 和 Di 表示)。 

(2)求解关于变量头晕(Di)的边缘概率?按照启发式的变量消元准则选择消元顺序。 

(3)根据求解变量头晕(Di)边缘概率的消元过程,绘制变量消元表格。 

(4) 根据上述变量消元表格绘制导出图,并分析计算导出图宽度。 

(5)根据上述变量消元表格绘制团树,并展示简化之后的结果。 

解答:

(1)这道题的第一题就依据上面的介绍,即可画出对应的因子图

1、先将这个贝叶斯网络转化为公式并化简(熟练的可以直接画):p(X)=p(S)p(F\mid S)p(De\mid S)p(C\mid F)p(H\mid F,De)p(N\mid De)p(Di\mid H,N)

得到的因子图如图所示:

(2)实际推理过程可以根据一些启发式规则来选择消元顺序,如:选择具有最少邻节点的节点进行变量消元。

我选的消元顺序为:C、S、Di、N、F、De(、H)

(3)依据上面的消元顺序绘制变量消元表格

(4)根据每次消元所涉及的变量来绘制导出图,导出图宽度为最大团的节点数减1

(5)我绘制的团树是这个样子的

以上仅为作者本人学习时的思考,有错误的地方还请指出。

### 因子图优化方法及其在图形模型中的应用 #### 定义与基本概念 因子图是一种用于表示概率分布的双向图模型,其中节点分为变量节点和因子节点。通过连接这些节点,可以清晰地表达复杂的多维联合概率分布函数。这种结构特别适合于处理具有条件独立性的系统,在机器视觉、机器人导航等领域有着广泛应用。 #### 优化方法概述 对于给定的一个因子图,其目标是最小化能量函数E(x),即寻找使得该函数取最小值的一组参数向量x*。常用的求解策略包括但不限于: - **梯度下降法**:基于一阶导数信息更新估计值直到收敛至局部最优解; - **高斯牛顿迭代**:利用二阶泰勒展开近似误差项并构建线性方程组求根; - **Levenberg-Marquardt算法**:结合了最速下降法和高斯-牛顿法的优点,能够在不同阶段自动调整步长大小以提高鲁棒性和效率; 上述提到的各种数值优化技术均适用于解决非线性最小二乘问题,并且已被证明能有效提升因子图中未知参量的精度[^1]。 #### 应用实例——SLAM (Simultaneous Localization And Mapping) 在一个典型的同步定位与建图(SLAM)任务里,移动平台需要同时确定自身位置以及周围环境的地图信息。此时可以通过定义一系列观测约束(landmark observations)作为因子加入到因子图框架下进行全局一致性校正。具体来说就是把每次测量得到的距离角度关系转化为对应的边权重矩阵形式存储起来,再借助前面讨论过的那些高效可靠的优化器来进行批量修正操作,最终获得更加精确稳定的轨迹重建结果[^2]。 ```python import gtsam # 创建一个空的非线性因子图对象 graph = gtsam.NonlinearFactorGraph() # 添加先验因素(假设已知起点) priorMean = gtsam.Pose2(0, 0, 0) priorNoise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.2, 0.2, 0.1])) graph.add(gtsam.PriorFactorPose2(1, priorMean, priorNoise)) # 构造初始猜测状态向量 initialEstimate = gtsam.Values() initialEstimate.insert(1, priorMean) # 进行最大后验概率(MAP)推理过程 optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate) result = optimizer.optimize() ``` 此代码片段展示了如何使用GTSAM库来设置简单的单点位姿估计问题,并调用了LM优化器执行实际运算流程。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值