一、二维随机变量及其分布
1、设为二维随机变量,对任意实数
,二元函数
称为二维随机变量的联合分布函数,简称为
的分布函数。表示事件
和事件
同时发生的概率。由此可以得到
2、性质:(1)是关于
或
的非减函数,即对于固定的
,当
时,
;对于固定的
,当
时,
;
(2),且
(3)关于x或y都是右连续,即
3、若二维随机变量只取有限对或可数无限对不同值
,
则称
为二位离散型随机变量。同时,称
为(X,Y)的联合概率分布,简称为概率分布或分布律。
自然,具有下列性质:
(1)
(2)
4、设F(x,y)是二维随机变量(X,Y)的联合分布函数,如果存在非负二元函数,对于任意的实数x,y,都有
则称(X,Y)为二维连续型随机变量,函数f(x,y)称为(X,Y)的联合概率密度函数,简称为概率密度或密度函数。
密度函数f(x,y)具有以下性质:
(1)
(2)
5、设D是平面上的有界区域,其面积为A,若二维随机变量的密度函数为
则称(X,Y)服从区域D上的均匀分布。
6、若二维随机变量(X,Y)的密度函数为
其中均为常数,则称(X,Y)服从参数
的二维正态分布。记作
二、边缘分布
1、边缘分布函数为,
2、
两式分别称为关于二维离散型随机变量X和Y的边缘概率分布。
在一般情况下,联合概率分布唯一确定其边缘概率分布,反之不然。
3、
分别称为二维连续型随机变量(X,Y)关于X和Y的边缘概率密度函数,简称边缘密度函数。
仅仅由X和Y的边缘分布,一般不能完全确定二维随机变量(X,Y)的联合分布。
三、条件分布
1、离散型随机变量:
对某一固定的i,若,则称
为在的条件下,随机变量Y的条件分布律。
对某一固定的j,若,则称
为在的条件下,随机变量X的条件分布律。
性质:
(1)
(2)
2、连续型随机变量
条件概率密度函数为,其中
且连续。
四、随机变量的独立性
1、设二维随机变量(X,Y)的联合分布函数,关于X和Y的边缘分布函数分别为.若对任意的实数x,y,有
则称随机变量X与Y相互独立。
若(X,Y)为离散型随机变量时,该式等价于
若(X,Y)为连续型随机变量时,该式等价于
2、当X和Y相互独立时,边缘概率密度函数(或边缘分布函数)的乘积就是(X,Y)的联合概率密度函数(或联合分布函数),即边缘分布完全确定联合分布。
五、二维随机变量函数的分布
1、离散型随机变量函数的分布:
2、连续型随机变量函数的分布:
1)和的分布,Z=X+Y
当X与Y相互独立时,由于,则可得到概率密度函数的卷积公式
2)商的分布,
特别的,当X和Y相互独立时,
3)的分布
设X,Y是相互独立的随机变量,它们的分布函数分别是,则