概率论与数理统计B 重点/笔记梳理 第三章

第三章 多维随机变量及其分布


本章重点研究二维随机变量的一些性质。

第一节 二维随机变量及其联合分布

1.对于二维随机变量的联合分布函数理解——就是概率密度函数在xOy平面上从第三象限的无穷处向(x,y)趋近求积分。

2.二维离散型随机变量——直接画表然后求每一列、排的概率值就可以了。

3.二维连续性随机变量:
F ( x , y ) = P ( X ≤ x , Y ≤ y ) = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v F(x,y)=P(X\le x,Y\le y)=\int_{-\infty}^{x}\int_{-\infty}^{y}f(u,v)dudv F(x,y)=P(Xx,Yy)=xyf(u,v)dudv
至于相关性质可以类别一维随机变量的分布函数性质。

4.二维均匀分布:
f ( x , y ) = { 1 S D , ( x , y ) ∈ D 0 , 其 他 f(x,y)= \left\{ \begin{matrix} \frac{1}{S_D},(x,y)\in D\\ 0,其他 \end{matrix} \right. f(x,y)={SD1,(x,y)D0,
5.*****二维正态分布(高斯核):公式比较复杂,建议看书上P81页

第二节 边缘分布

1.离散型和连续性通式:
F X ( x ) = F ( x , + ∞ ) F Y ( y ) = F ( + ∞ , y ) ( F X ( x ) 、 F Y ( y ) 就 是 一 维 的 随 机 变 量 了 ) ∴ ( 一 维 分 布 函 数 与 密 度 函 数 的 关 系 公 式 ) F ( x ) = ∫ − ∞ x f ( t ) d t F_X(x)=F(x,+\infty)\\ F_Y(y)=F(+\infty,y)\\ (F_X(x)、F_Y(y)就是一维的随机变量了)\\ \therefore (一维分布函数与密度函数的关系公式)\\ F(x)=\int_{-\infty}^{x}f(t)dt FX(x)=F(x,+)FY(y)=F(+,y)(FX(x)FY(y))()F(x)=xf(t)dt
2.对于离散型的变形,可以直接求每一列、每一排的和就可以了,这些和就是所求的离散型二维随机变量的边缘分布值。

因为对于离散型而言,将离散型变量推向无穷就是对于每一个X,将其所有的Y(其他特征值)加起来,便可以得到边缘分布。

3.对于连续型的变形:
F X ( x ) = F ( x , + ∞ ) = ∫ − ∞ x ∫ − ∞ + ∞ f ( u , v ) d u d v = ∫ − ∞ x f X ( t ) d t F_X(x)=F(x,+\infty)=\int_{-\infty}^{x}\int_{-\infty}^{+\infty}f(u,v)dudv=\int_{-\infty}^{x}f_X(t)dt FX(x)=F(x,+)=x+f(u,v)dudv=xfX(t)dt
故:
f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy fX(x)=+f(x,y)dy
同理可以得到:
f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dx fY(y)=+f(x,y)dx
可以这样记忆:对于连续性随机变量来说,无穷就是将对应的变量进行从负无穷到正无穷的积分

第三节 相互独立的随机变量及条件分布

一.独立性

证明两个随机变量相互独立方法(通式)与之前的类似(充要条件):
F ( x , y ) = F X ( x ) ⋅ F Y ( y ) F(x,y)=F_X(x)·F_Y(y) F(x,y)=FX(x)FY(y)
推论:

  • 对于离散型随机变量:
    p i j = p i . × p . j p_{ij}=p_{i.}\times p_{.j} pij=pi.×p.j

  • 对于连续性随机变量:
    f ( x , y ) = f X ( x ) × f Y ( y ) f(x,y)=f_X(x)\times f_Y(y) f(x,y)=fX(x)×fY(y)

二.条件概率

1.离散型:
P ( X = x ∣ Y = y ) = P ( X = x , Y = y ) P ( Y = y ) P(X=x|Y=y)=\frac{P(X=x,Y=y)}{P(Y=y)} P(X=xY=y)=P(Y=y)P(X=x,Y=y)
2.
f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)} fXY(xy)=fY(y)f(x,y)
为在Y=y条件下X的条件概率密度,类似地,称:
f Y ∣ X ( y ∣ x ) = f ( x m y ) f X ( x ) f_{Y|X}(y|x)=\frac{f(xmy)}{f_X(x)} fYX(yx)=fX(x)f(xmy)
为在X=x条件下,Y的条件概率密度。

三.随机变量函数的分布

1.离散型——枚举法

2.连续型——卷积公式法

已知二维随机变量的联合概率密度函数:
f ( x , y ) f(x,y) f(x,y)
则:Z=X+Y的概率密度为:
f Z ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x f Z ( z ) = ∫ − ∞ + ∞ f ( y , z − y ) d y f_Z(z)=\int_{-\infty}^{+\infty}f(x,z-x)dx\\ f_Z(z)=\int_{-\infty}^{+\infty}f(y,z-y)dy fZ(z)=+f(x,zx)dxfZ(z)=+f(y,zy)dy
假如X、Y相互独立,那么:
f Z ( z ) = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x f Z ( z ) = ∫ − ∞ + ∞ f X ( z − y ) f Y ( y ) d y f_Z(z)=\int_{-\infty}^{+\infty}f_X(x)f_Y(z-x)dx\\ f_Z(z)=\int_{-\infty}^{+\infty}f_X(z-y)f_Y(y)dy fZ(z)=+fX(x)fY(zx)dxfZ(z)=+fX(zy)fY(y)dy
这边是卷积公式。

tips:深度学习上的卷积公式跟概率论上的还是有点关系哦。

)dx\
f_Z(z)=\int_{-\infty}^{+\infty}f_X(z-y)f_Y(y)dy
$$
这边是卷积公式。

tips:深度学习上的卷积公式跟概率论上的还是有点关系哦。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值