3.1 二维随机变量及其分布函数
1. 二维随机变量及其分布函数
- 二维随机变量 (向量):在同一个样本空间上的两个随机变量X和Y组成(X, Y)
- 由于随机变量X和Y从不同角度刻画统一随机试验,X和Y可能还存在内部联系,因此使用二维随机变量进行刻画
- 二维分布函数:设 (X, Y) 是二维随机向量, 对任意实数 x, y, 称
F(x, y) = P(X ≤ x, Y ≤ y)
为二维随机变量 (X, Y) 的二维分布函数(联合分布函数)
- 定理:设 F(x, y) 为二维随机变量 (X, Y) 的分布函数, 则
- F(x, y) 关于 x 及 y 单调不减
- F(−∞, −∞) = F(−∞, y) = F(x, −∞) = 0, F(+∞, +∞) = 1
- F(x, y + 0) = F(x + 0, y) = F(x, y)
- 如果 x1 ≤ x2, y1 ≤ y2, 有
- F(x, y) 关于 x 及 y 单调不减
(矩形的区域大于0)
如果一个二元函数满足 (2),(3),(4), 那么, 他是某个二维随机变量的分布函数
2. 二维离散型随机变量及其概率分布
- 二维离散型随机变量:二维随机变量 (X, Y) 只取有限个或可数无穷多个点对
-
二维概率分布/分布律(X与Y的联合概率分布):设二维随机变量 (X, Y) 所有可能取值为
,记 ,
可用表格表示
- 性质
- 二维离散性随机变量 (X, Y) 的分布函数可以用概率分布求出
- 三项分布:在n重独立试验中, 若每次试验只有 A1, A2, A3 三个可能的结果, 且 0 <
= P(
) < 1, i = 1, 2, 3, 则 p1 + p2 + p3 = 1。令随机变量 X1, X2分别表示 n 次试验中A1, A2 的发生次数, 则 (X1, X2) 有联合概率分布
3. 二维连续型随机变量及其密度函数
- 二维连续型随机变量:二维随机变量 (X, Y), 如果存在二元非负函数 f(x, y), 使得对任意实数 x, y, 有
- (X, Y):是二维连续型随机变量
- f(x, y): (X, Y) 的二维概率密度函数( X 与 Y 的联合密度函数)
- 性质
-
定理:二维连续型随机变量 (X, Y) 有密度函数 f(x, y), 则
- F(x, y) 是连续函数且在 f(x, y) 的连续点 (x, y), 有
- 对平面上任意区域 G ⊂
, 若 f(x, y) 在 G 上可积, 有
- 对平面上任一条曲线 L, 有 P((X, Y) ∈ L) = 0
-
-
-
二维均匀分布:密度函数在随机变量的值域上是常数,令 G 是平面上一个有界区域, 若二维随机变量 (X, Y) 有密度函数
- m(G):G 的面积
- (X, Y) :在 G 上均匀分布,记为(X, Y) ∼ U(G)
- 描述的是点 “等可能” 地落入大小相同的子块内, 而这里大小是用面积度量的
-
- 对于Z = min(X, Y), (Z > t) = (X > t, Y > t)
- 对于W = max(X, Y),(W ≤ t) = (X ≤ t, Y ≤ t)
3.2 边缘分布及随机变量的独立性
1. 边缘分布函数及随机变量的独立性
- X 及 Y 的边缘分布函数:设 F(x, y) 为二维随机变量 (X, Y) 的二维分布函数, 则 X 及 Y 的边缘分布函数
和
有
-
随机变量的独立性:F(x, y) 是二维随机变量 (X, Y) 的二维分布函数,
,
分别为 X, Y 的边缘分布函数, 若对任意 x, y, 有
-
定理:设随机变量 X 和 Y 独立, g(x) 与 h(y) 分别是 x 与 y 的连续函数,那么,X1 = g(X) 和 Y1 = h(Y) 也相互独立
2. 二维离散型随机变量的边缘分布及独立性
- 边缘概率分布(边缘分布):设 (X, Y) 是二维离散型随机变量,有二维概率分布
X 和 Y 都是一维离散型随机变量,有各自的分布律(边缘分布)
- (X 和 Y 的分布列写在表格的边缘,所以叫做边缘分布)
- 随机变量 X 和 Y 独立 ⇐⇒ pij=pi⋅p⋅j,i, j = 1, 2, . . ..
3. 二维连续型随机变量的边缘分布及独立性
对二维连续型随机变量 (X, Y), 有二维密度函数 f(x, y), 则 X 和 Y 作为一维随机变量也是连续型的, 有各自的密度函数,相对于二维密度函数, 它们分别叫做 X 与 Y 的边缘密度函数。
- 定理:(X, Y) 的二维密度为 f(x, y), X 与 Y 的边缘密度分别为
-
X 与 Y 相互独立 ⇐⇒ f(x, y) =
3.3 条件分布与条件密度
1. 条件分布函数:当P(Y=y) > 0 时,Y=y条件下X的条件分布函数为
2. 离散型随机变量的条件分布
- Y =
条件下 X 的条件概率分布:
任意给定,且 P(Y =
) = p⋅j > 0
-
X =
条件下 Y 的条件概率分布:
任意给定,且 P(X =
) = pi⋅ > 0
-
性质:条件概率分布也是一个离散型概率分布
-
条件分布函数
3. 连续型随机变量的条件密度函数
- 条件分布函数:设 (X, Y) 有二维密度 f(x, y), 从而 X 与 Y 有边缘密度
, 则
-
条件密度函数
-
当边缘密度和条件密度都已知时, 我们可以求出联合密度
3.4 二维随机变量函数的分布
1. 离散型随机向量的函数的分布
当 (X, Y) 是二维离散型随机变量, 且 X 与 Y 有联合分布律,i, j = 1, 2,...,则Z=g(X, Y)有分布律
2. 连续型随机向量的函数的分布
- 当 (X, Y) 为二维连续型随机变量。且有密度函数 f(x, y)。若 g(x, y) 是连续可微函数,则 Z = g(X, Y) 是一维连续型随机变量,从而有由 f(x, y) 求 Z 的密度函数
的问题。方法如下:
- 确定 Z 的值域 R(Z)对任意 z ∈ R(z), 求 Z 的分布函数
,即
-
- 其中,G(z) = {(x, y) : g(x, y) ≤ z}
- 当 z ∉ R(Z) 时,
= 0;当 z ∈ R(Z) 时,
=
- 确定 Z 的值域 R(Z)对任意 z ∈ R(z), 求 Z 的分布函数
- 注
- 在几何上,z= f (x,y)表示空间一个曲面,介于它和xoy平面的空间区域的体积为1
- P((X,Y)∈ G)等于以G为底,以曲面z= f(x, y)为顶面的柱体体积。所以(X,Y)落在面积为零的区域的概率为零。
-
设二维随机变量 (X, Y) 有密度函数 f(x, y),Z = X + Y, 则对任意 z ∈ R(Z),有
-
特别的,当X和Y独立时,有(卷积公式)
3.5 多维随机变量
1. n维分布函数
- n 维随机变量 (
):
是定义在同一个样本空间 Ω 上的随机变量
-
n 维分布函数:对 n 个实数
,有n 维随机变量 (
n)的n元函数
-
具有二维分布函数的性质
-
-
若对任意实数
, 有 F(𝐱𝟏, 𝐱𝟐,…,𝐱𝐧) =
,则称随机变量
相互独立
2. 多维离散型随机变量
- n 维概率分布:
-
性质
-
随机变量
相互独立当且仅当
-
- 多项分布:在 N 重独立试验中,若每次试验有 n + 1 种可能结果
,且
。令Xi表示N冲独立重复实验中Ai发生的次数,i=1,2,…,n,则(
)所服从的分布称为为多项分布,记为
- 二项分布的可加性:设 X ∼ B(n, p),Y ∼ B(m, p),且 X 与 Y 相互独立,则
Z = X + Y ∼ B(m + n, p)
- 离散卷积公式:
-
推论1:设
,且
相互独立,则
- 推论2:设
独立同分布于 0 − 1 分布 B(1, p),则
- 泊松分布的可加性
- 定理:设 X ∼ P(
), Y ∼ P(
),且 X 与 Y 相互独立,则
- 推论:设X ∼ P(
),i = 1, 2, . . . , n,且
相互独立,则
- 定理:设 X ∼ P(
3. 多维连续型随机变量
- n 维连续型随机变量:
- n 维概率密度函数:f(
)
-
性质
-
- n 维随机变量的分布函数
- 定理:(
)有 n 维密度函数𝑓(
),
有边缘密度
, i = 1, 2, . . . , n,则
相互独立当且仅当
在各密度函数的公共连续点上成立
- n 维均匀分布:G 是 Rn 中一个可求度量的区域,当 n 维随机变量(
)有密度函数
其中, m(G) 为 G 的度量, 称()服从 G 上 的均匀分布
- Γ 分布的可加性:设随机变量
~Γ(
, 𝛽), i = 1, 2, . . . , n,且
相互独立,则
- 最大值和最小值的分布
- 设随机变量
独立,且Xi有分布函数
(x), i = 1, 2, . . . , n
- M=max(
)
- N =min(
)
- M=max(
-
特别的,若
独立同分布于 F(x),那么
- 设随机变量