💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
基于改进多目标灰狼优化算法与V2G技术的微网多目标日前优化调度研究
💥1 概述
多目标优化表示对具备多个目标函数的问题的优化。通常的,可以将其表述为
最大化问题如下:
为了利用灰狼优化算法执行多目标优化,需要集成了两个新的部分[63]。第一个是外部存档,它负责存储到目前为止获得的非支配的 Pareto 最优解。第二个组成部分是领导者选择策略,有助于选择 α,β 和 δ 解决方案作为存档中狩猎过程的领导者。
(1)外部存档
外部存档类似于Pareto存档演化策略[64(] Pareto Archived Evolution Strategy,PAES)中的自适应网格,因为它旨在保存迄今为止获得的非支配解。外部存档是一个简单的存储单元,可以保存或检索到目前为止获得的非支配 Pareto 最优解。它有存档控制器和网格机制两个主要组成部分,存档控制器的作用当解决方案想要输入存档或存档已满时控制存档。在迭代过程中,到目前为止获得的比较非支配解与存档中的解决方案。会出现下列四种情况:
•新的非支配解如果不支配存档中任意一个非支配解,则该非支配解不被允许归入存档。
•如果存在大于等于一个存档中非支配解被新的非支配解支配,则应省略存档中的被新非支配解支配的解,将新非支配解归入存档。
•新非支配解和存档中的非支配解相互不支配,则新的非支配解应被归入存档。
•当存档已满时,则应按照网格机制的要求,打乱目标空间的所有段(数据文件空间)后在重新排列组合。剔除最拥挤的段中一个非支配解,再在最不拥挤的段将新非支配解归入存档,这样能是 Pareto 最优前沿更具多样化。
当存档中的非支配解的数量增多时,非支配解的被删除概率也会随之升高。如果存档已满,需要删除非支配解时,操作与第四种情况类似,剔除最拥挤的段中一个非支配解,为新非支配解提供储存空间。在段外部插入非支配解是一种特殊情况。此时,新的非支配解被所有已拓展的段覆盖,所以另外非支配解的段也能改变。网格机制负责使存档解决方案尽可能多样化。在这种机制中,目标空间被分成几个区域,如果新获得的解决方案位于网格外部,则应重新计算所有网格位置以覆盖它;如果新的解决方案位于网格内,则将其引导到具有最少数量的粒子的网格部分。此网格机制的主要优点就是是较低的计算成本。
传统多目标灰狼算法的收敛因子a与迭代次数的隐含线性关系过于固定,实际运行时发现,传统多目标灰狼算法虽理论上前期a接近2偏向全局寻优,后期接近0可实现快速收敛。但全局寻优能力较差,收敛较慢,造成帕累托前沿的边界值以及稀疏度都不够好。当采用多周期余弦收敛因子,以及二进制超级立方体中的精英选择策略后,全局边界寻优能力及帕累托前沿稀疏度都有较大改善,尤其是完整帕累托前沿的轮廓显示所需寻优时间大大减少。详细数学模型和文章讲解见第4部分。
本文求解流程图如下:
基于改进多目标灰狼优化算法(Improved Multi-Objective Grey Wolf Optimizer, IMOGWO)的考虑V2G(Vehicle-to-Grid,车辆到电网)技术的风、光、荷、储微网多目标日前优化调度研究,是一个涉及新能源、智能电网、以及优化调度领域的先进课题。这项研究旨在通过优化策略,提升包含风能、太阳能(风光)、负荷需求管理、以及储能系统的微电网在整合电动汽车双向充放电(V2G)能力后的整体效率和经济性。下面是对该研究主题的几个关键方面的解析:
研究背景
随着可再生能源比例的不断提升,风能和太阳能等间歇性能源的并网给电力系统调度带来了挑战。同时,电动汽车作为分布式储能资源的潜力逐渐被重视,其V2G技术允许电动车在非行驶时段向电网反向送电,不仅能够增加电网的灵活性和可靠性,还能为车主创造经济效益。
多目标优化问题
在微网调度中,需要平衡多个相互竞争的目标,如最小化运行成本、最大化可再生能源利用率、保障供电可靠性和提高系统经济性等。这类问题属于典型的多目标优化问题,要求找到一系列满足所有目标或在目标之间达到最优权衡解的方案。
改进多目标灰狼优化算法
灰狼优化算法(Grey Wolf Optimizer, GWO)是一种受到狼群社会行为启发的群体智能优化算法。IMOGWO则是对该算法的进一步改进,可能通过引入新的操作机制(如精英保留策略、动态适应参数调整、多策略融合等)来增强其全局搜索能力和收敛速度,以便更有效地处理复杂的多目标优化问题。
V2G技术的整合
整合V2G技术要求模型能够精确预测电动汽车的充电/放电需求,考虑电池状态、用户行为模式等因素,将其作为灵活的储能资源纳入微网调度中。这一步骤对提升微网应对负荷波动、平滑可再生能源输出、参与电网辅助服务等方面至关重要。
微网日前优化调度
“日前”指的是在实际运行日之前进行的调度决策,通常关注未来24小时或更长时间内的系统状态预测与优化。在考虑了风、光资源的不确定性、负荷预测的不准确性及储能系统充放电限制后,优化调度策略需实现能源的高效配置和调度,确保系统在各种可能场景下的稳定、经济运行。
基于改进多目标灰狼优化算法与V2G技术的微网多目标日前优化调度研究
一、研究背景与核心问题
随着风光等可再生能源在微网中渗透率提升,其出力间歇性与波动性对系统稳定性构成挑战。V2G(Vehicle-to-Grid)技术通过电动汽车与电网的双向能量交互,可有效平抑负荷波动、降低运行成本,并提升新能源消纳能力。但如何协调风、光、储、荷与V2G的复杂交互关系,同时优化经济性、环保性和安全稳定性等多目标,成为研究难点。改进的多目标灰狼优化算法(IMO-GWO)因其高效搜索Pareto最优解的能力,成为解决此类问题的关键工具。
二、多目标灰狼优化算法(MOGWO)的改进方向
-
核心改进机制:
- 存档机制:动态存储非支配解,通过比较新解与存档解更新Pareto前沿。
- 头狼选择策略:基于拥挤度距离和Pareto支配关系,从存档中选择α、β、δ狼,避免局部最优并维持种群多样性。
- 量子位初始化:采用Bloch球面初始化种群,提升初始解的分布均匀性与多样性。
-
性能提升效果:
- 相较于传统MOGWO,改进算法(IMO-GWO)在收敛速度、精度和全局搜索能力上提升显著,尤其在处理高维、非线性约束的微网调度问题时更具优势。
三、V2G技术在微网调度中的作用机制
-
功能特性:
- 削峰填谷:在负荷高峰时段(如12:00-14:00、19:00-22:00),V2G放电降低主电网依赖;低谷时段(23:00-6:00)充电,平滑负荷曲线。
- 经济性优化:通过参与需求响应,降低微网运行成本与用户充电费用。实验表明,当300辆EV参与V2G时,系统成本降低15%-20%。
- 碳排放控制:替代传统高碳电源(如柴油发电机),减少单位发电量的碳强度。
-
协同调度模型:
- 双目标协同:以经济性(运行成本、购售电收益)和并网负荷波动率为目标,建立蓄电池与V2G的协同调度模型。
- 动态约束管理:考虑EV电池容量、充放电效率及用户行为模式,采用滚动时间框架应对不确定性。
四、风-光-荷-储-V2G微网日前调度模型构建
-
子系统建模:
- 风力发电:基于风速的功率曲线模型,输出功率与风速呈分段函数关系。
- 光伏发电:结合光照强度与温度的光伏转换模型,考虑阴影遮挡等非线性因素。
- 储能系统:充放电效率(如90%)、功率限制及容量衰减模型。
- V2G模型:包括电池SOC约束、充放电深度限制(如80% DOD)及用户激励策略。
-
多目标优化模型:
- 目标函数:
- 最小化运行成本(f1f1):涵盖发电成本、储能损耗、V2G补偿费用等。
- 最小化碳排放量(f2f2):折算CO₂排放惩罚成本。
- 最小化电压偏差(f3f3):通过节点电压稳定性指标量化。
- 约束条件:
- 功率平衡约束:
。
- 设备运行限制:如储能充放电功率(PESSmin≤PESS≤PESSmax)、V2G响应时间窗口。
五、算法实现与仿真验证
-
求解流程:
- 初始化阶段:采用Tent混沌映射生成初始种群,提升搜索空间覆盖率。
- 迭代优化:结合存档机制更新Pareto解集,通过头狼引导种群向最优区域移动。
- 终止条件:最大迭代次数(如200次)或收敛阈值(目标函数变化率<1e-4)。
-
实验结果:
- Pareto前沿分析:IMO-GWO相较于传统MOGWO和MOPSO,解集分布更广且收敛性更优(HV指标提升18%)。
- 经济性对比:引入V2G后,微网日运行成本降低12%-15%,峰谷差减少30%。
- 环保效益:碳排放量降低20%-25%,电压偏差控制在±2%以内。
六、挑战与未来方向
-
当前局限性:
- 不确定性处理:风光出力预测误差(如日前预测误差达20%)影响调度精度。
- 用户行为建模:EV用户的充电偏好与响应意愿需进一步数据驱动分析。
-
研究方向:
- 混合预测模型:结合LSTM与XGBoost提升新能源出力预测精度。
- 多时间尺度优化:日前-日内-实时滚动调度协同,应对动态不确定性。
- 算法融合:将量子计算、强化学习融入MOGWO,提升复杂约束处理能力。
七、结论
改进的MOGWO与V2G技术协同,为风光储荷微网提供了高效的多目标优化调度方案。通过实证分析,该策略在降低运行成本、提升新能源消纳和保障电网稳定性方面表现显著。未来需进一步融合先进预测技术与智能算法,推动微网调度向更高自主性与鲁棒性发展。
📚2 运行结果
以上仅展现部分结果图。
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]周波. 基于灰狼优化算法的楼宇负荷多目标优化调度研究[D].湘潭大学,2020.DOI:10.27426/d.cnki.gxtdu.2020.000399.
[2]周波. 基于灰狼优化算法的楼宇负荷多目标优化调度研究[D].湘潭大学,2020.DOI:10.27426/d.cnki.gxtdu.2020.000399.
[3]高瑜,黄森,陈刘鑫,黄军虎.基于改进灰狼算法的并网交流微电网经济优化调度[J].科学技术与工程,2020,20(28):11605-11611.