图 1展示了之前看到的一种此类拓扑。它将两个晶体管连接成达林顿对,其中 Q2 用作非加热环境温度计,Q1 用作自加热气流传感器。参考放大器A1 和电流检测电阻R3 调节恒定值67 mA = 加热电流= 333 mW @ 5 V 加热功率。
图 1典型的自热晶体管热气流传感器。
该热量输入使 Q1 的温度在 0 fpm 空气速度下比环境温度高出 64 o C,在 1000 fpm 空气速度下冷却至 24 o C,如图2所示。
图 2热传感器温度与空气速度的关系。
如图2所示,自热晶体管传感器的空速与冷却之间的关系是高度非线性的。这是此类传感器的固有特性,导致传感器温度与空气速度信号同样呈非线性。因此,即使相对较小的电源不稳定性(将%转化为传感器温升的不稳定性)也会产生令人惊讶的大空速测量误差。
显然,任何不完美的电源稳定性都会导致这个问题。
但图 3提供了一种非常简单且廉价的解决方案,仅包含两个添加的电阻器:R7 和 R8。
图 3添加的 R7 和 R8 在加热电压 V 和加热电流 I 之间建立了消除不稳定的关系。
添加的 Rs 将来自电流感测 R3 的反馈与加热电压源 V 相加。求和以一定比例进行,使得 V 的百分比增加会产生电流 I 的相等且相反的百分比减少,反之亦然。结果如图 4所示。
请注意 5 V 处的零点(拐点),此处加热完全与电压无关。
图 4:传感器温度与电源电压的关系,其中:蓝色= 加热电压 V 和(未校正的)功率;红色=加热电流I;黑色 = I*V = 加热功率/温度。
在简单的无效数学中,这是同样的事情:
I = (0.2 – V*R8/R7)/R3 = (0.2 – 0.02V)/R3
H = I*V = (0.2V – 0.02V 2 )/R3
dH/dV = (0.2 – 0.04V)/R3 = (0.2 – 0.2)/R3 = 0 @V = 5 伏
dH = -0.01% @V = 5 伏 ±1%
请注意,稳定性提高了 200:1,将 V 的 ±1% 变化衰减至加热功率和温度的仅 -0.01% 变化。