简介
1 一阶逻辑基本概念
一阶逻辑(First-Order Logic, FOL) 是在命题逻辑的基础上引入了个体变元、量词和谓词的逻辑系统。它用于描述对象之间的关系及其性质,主要包括以下基本概念:
常量:表示具体的个体或对象,如 a,b,c。变量:表示任意的个体或对象,如 x,y,z。谓词:表示对象的性质或关系,通常写成 P(x)、R(x,y) 等,其中 P 和 R 是谓词符号。
函数:将个体映射到另一个个体,如 f(x) 表示一个函数。
量词:全称量词:∀xP(x) 表示“对所有的 P(x) 成立”;存在量词:∃xP(x) 表示“存在至少一个 x,使得P(x) 成立”。
公式:通过谓词、变量、量词、逻辑运算符等组合成的语句。例如:
原子公式:如 P(x)、R(x,y)。
复合公式:如 ¬P(x), P(x)∧Q(x), ∀xP(x)→Q(x)。
2 一阶逻辑等值演算
等值演算是指利用逻辑规则将一个逻辑表达式转换成等价的表达式,这些转换不改变表达式的真值。
逻辑运算的基本性质:
交换律:P∧Q => Q∧P;P∨Q≡Q∨P
结合律:(P∧Q)∧R => P∧(Q∧R)
分配律:P∧(Q∨R) => (P∧Q)∨(P∧R)
双重否定律:¬(¬P)≡P
德摩根律:
¬(P∧Q) => ¬P∨¬Q
¬(P∨Q) => ¬P∧¬Q
量词的等值演算:
量词与否定的转换:¬∀xP(x) => ∃x¬P(x),¬∃xP(x) => ∀x¬P(x)
量词的分配:∀x(P(x)∧Q(x)) => (∀xP(x))∧(∀xQ(x))
∃x(P(x)∨Q(x)) => (∃xP(x))∨(∃xQ(x))
蕴含关系的等值:
P→Q≡¬P∨Q
¬(P→Q)≡P∧¬Q
这些等值演算规则可以用来简化或转换逻辑表达式。
3 一阶逻辑的推理
一阶逻辑的推理是基于逻辑规则和前提,从已知命题中推出结论的过程。主要包括以下两种方法:
(1) 演绎推理
定义:从一般性原则(公理或已知前提)出发,通过逻辑规则一步步推出具体结论。
例子:
前提1:
∀x(P(x)→Q(x))
前提2:P(a)
结论:Q(a)
解释:根据全称量词和蕴含关系,
P(a) 成立时,必然有
Q(a) 成立。
(2) 归纳推理
定义:通过具体实例观察和归纳,得到一般性结论。这种推理在数学归纳法中常见,但结论并不一定具有严格的逻辑必然性。
例子:
观察到
P(1),P(2),P(3) 成立,推测 ∀nP(n)。
4. 一阶逻辑基本概念
4.1 一阶逻辑命题符号化
4.1.1 概念
个体词:所研究对象中可以独立存在的具体或抽象的客体。
- 个体常项:具体的事务,用 a, b, c 表示。
- 个体变项:抽象的事物,用 x, y, z 表示。
- 个体域(论域)——个体变项的取值范围。
- 有限个体域,如 {a, b, c}, {1, 2}。
- 无限个体域,如 N, Z, R, …。
- 全总个体域——由宇宙间一切事物组成。
谓词:表示个体词性质或相互之间关系的词。
- 谓词常项,如, F(a):a 是人。
- 谓词变项,如, F(x):x 具有性质 F。
4.1.2 例题
题目中没有给个体域,一律用全总体个体域。
例3:(1)F(X)相当于从全总个体域提取出正数所在的域;G(X)相当从全总个体域提取出负数所在的域。
(2)F(X)相当于从全总个体域提取出无理数所在的域;G(X)相当从全总个体域提取出有理数所在的域。
4.2 一阶逻辑公式及解释
4.2.1 定义
4.2.2 一阶语言L的项与原子公式
4.2.3 一阶语言L的公式
4.2.4 封闭的公式
4.2.5 公式的解释
4.2.6 公式的类型
4.2.7 代换实例
4.3 习题
5. 一阶逻辑等值演算与推理
5.1 一阶逻辑等值式与置换规则
5.1.1 基本等式
5.1.2 置换规则、换名规则、代替规则
5.1.3 练习题
5.2 一阶逻辑前束范式
5.2.1 前束范式的概念
5.2.2 前束范式存在定理
一阶逻辑中的任何公式都存在与之等值的前束范式
5.3 一阶逻辑的推理理论
5.3.1 推理的形式结构
5.3.2 推理定律
5.3.3 量词消去引入规则
5.3.4 自然推理系统 NL
5.3.5 提示
例题:
5.4 习题
1 一阶逻辑基本概念
一阶逻辑(First-Order Logic, FOL) 是在命题逻辑的基础上引入了个体变元、量词和谓词的逻辑系统。它用于描述对象之间的关系及其性质,主要包括以下基本概念:
常量:表示具体的个体或对象,如 a,b,c。变量:表示任意的个体或对象,如 x,y,z。谓词:表示对象的性质或关系,通常写成 P(x)、R(x,y) 等,其中 P 和 R 是谓词符号。
函数:将个体映射到另一个个体,如 f(x) 表示一个函数。
量词:全称量词:∀xP(x) 表示“对所有的 P(x) 成立”;存在量词:∃xP(x) 表示“存在至少一个 x,使得P(x) 成立”。
公式:通过谓词、变量、量词、逻辑运算符等组合成的语句。例如:
原子公式:如 P(x)、R(x,y)。
复合公式:如 ¬P(x), P(x)∧Q(x), ∀xP(x)→Q(x)。
2 一阶逻辑等值演算
等值演算是指利用逻辑规则将一个逻辑表达式转换成等价的表达式,这些转换不改变表达式的真值。
逻辑运算的基本性质:
交换律:P∧Q => Q∧P;P∨Q≡Q∨P
结合律:(P∧Q)∧R => P∧(Q∧R)
分配律:P∧(Q∨R) => (P∧Q)∨(P∧R)
双重否定律:¬(¬P)≡P
德摩根律:
¬(P∧Q) => ¬P∨¬Q
¬(P∨Q) => ¬P∧¬Q
量词的等值演算:
量词与否定的转换:¬∀xP(x) => ∃x¬P(x),¬∃xP(x) => ∀x¬P(x)
量词的分配:∀x(P(x)∧Q(x)) => (∀xP(x))∧(∀xQ(x))
∃x(P(x)∨Q(x)) => (∃xP(x))∨(∃xQ(x))
蕴含关系的等值:
P→Q≡¬P∨Q
¬(P→Q)≡P∧¬Q
这些等值演算规则可以用来简化或转换逻辑表达式。
3 一阶逻辑的推理
一阶逻辑的推理是基于逻辑规则和前提,从已知命题中推出结论的过程。主要包括以下两种方法:
(1) 演绎推理
定义:从一般性原则(公理或已知前提)出发,通过逻辑规则一步步推出具体结论。
例子:
前提1:
∀x(P(x)→Q(x))
前提2:P(a)
结论:Q(a)
解释:根据全称量词和蕴含关系,
P(a) 成立时,必然有
Q(a) 成立。
(2) 归纳推理
定义:通过具体实例观察和归纳,得到一般性结论。这种推理在数学归纳法中常见,但结论并不一定具有严格的逻辑必然性。
例子:
观察到
P(1),P(2),P(3) 成立,推测 ∀nP(n)。