要了解前束范式,就得先知道量词,量词分为全称量词和存在量词:
前束范式就是量词全部在括号的外面,看下面的例题:
怎么转化为前束范式:
① 如果有蕴含,将蕴含通过蕴含等值式转换一下
② 换名
下面这两道题没有蕴含,直接换名:
这里注意一下,∀(任意)对∨(析取)不适合分配律,对∧(合取)适合分配律,所以上面的(1)可以不换名:
当然换名也没错,统一换名就行,如果上面的推导没有看懂的,建议先补补谓词逻辑,我后面可能会出总结。
下面这个式子就有蕴含了,我们先用蕴含等值式换一下,然后再换名:
当然我们也可以总结个规律,省掉将蕴含换掉这一步:前变后不变
看下面这道题,前后都有x,换名换前换后都行,这里换前面。前变的意思就是:把前面的指导变元拿出去,∃变∀,∀变∃。后不变就是:把后面的直接拿出去。
(3)和(2)同理:
看点比较复杂的:
对于复杂的要注意,要通过换名消去既约束出现又自由出现的个体变项:
注意下面的练习1,从否定开始都是x,y,z的辖域:
所以前后的x,y不用换名。
这题和上面一样,x的辖域是
,不用换x。
答案:A