高等数学学习记录-不定积分

不定积分引入

∫ \int :积分符号(累加求和的意思,但不是我们所常知的累加求和,而是把无数多无穷小量累加求和[极限思想])
不定积分:Anti-derivatives 即Anti(反)求+derivatives(导数)

例: ( sin ⁡ x ) ′ = cos ⁡ x → cos ⁡ x (\sin x)'= \cos x \rightarrow \cos x (sinx)=cosxcosx sin ⁡ x \sin x sinx的导数, sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx一个原函数
→ \rightarrow 原函数不止一个,如 sin ⁡ x \sin x sinx+C(常数)同样是 cos ⁡ x \cos x cosx

那么,我们要怎么表示一个函数所有原函数呢 ?

不定积分: ∫ f ( x ) d x \int f(x)dx f(x)dx即表示 f ( x ) f(x) f(x)的全体原函数
∫ f ( x ) d x \int f(x)dx f(x)dx=F(x)+C
其中 ∫ \int 称为积分号,x称为变量,f(x)称为被积函数,f(x)dx称为积分表达式,C为积分函数
在这个例子中: ∫ sin ⁡ x d x \int\sin xdx sinxdx= cos ⁡ x \cos x cosx+C(任意常数)
tips:( ∫ f ( x ) d x \int f(x)dx f(x)dx)'=f(x) 原函数的导数等于自身

有没有可能,P(x)与F(x)都是f(x)的一个原函数,但并不只是相差一个常数C呢?

P(x)‘=f(x)
F(x)’=f(x)
P(x)‘-F(x)’=(P(x)-F(x))'=0
又C(常数)‘=0
P(x)-F(x)=C(常数)
故只能相差一个常数C

不定积分运算法则(线性性)

设函数f(x) g(x)的原函数存在,m,n为非零常数则
∫ [ k f ( x ) + l g ( x ) ] d x = k ∫ f ( x ) d x + l ∫ g ( x ) d x \int [kf(x)+lg(x)]dx= k\int f(x)dx+l\int g(x)dx [kf(x)+lg(x)]dx=kf(x)dx+lg(x)dx
tips:
1.通式 → \rightarrow 对于幂函数ax的导数为xax-1
反过来ax的原函数为 1 x + 1 \frac{1}{x+1} x+11ax+1+C

2.在运算去掉所有 ∫ \int 后加C

3.在求积分 ∫ 1 x d x \int \frac{1}{x}dx x1dx时,我们应想到x可能小于0,那么就需要分情况讨论
x>0时(lnx)‘= 1 x \frac{1}{x} x1
x<0时(ln(-x))’= 1 − x \frac{1}{-x} x1*(-1)= 1 x \frac{1}{x} x1
∫ 1 x d x \int \frac{1}{x}dx x1dx=
lnx + c(x > 0)
ln(-x) + c(x < 0)
(合并一下)
∫ 1 x d x \int \frac{1}{x}dx x1dx = ln|x| + c(x ≠ \neq = 0)

第一类换元法(整体换元)[复合求导逆运算](“凑微分”“还原”:求原微分)

∫ f ( u ) d u \int f(u)du f(u)du=F(u)+C且u= ϕ \phi ϕ(x)可导
∫ f [ ϕ ( x ) ] ϕ ′ ( x ) d x \int f [ \phi (x) ]\phi'(x)dx f[ϕ(x)]ϕ(x)dx= ∫ f [ ϕ ( x ) ] d ϕ ( x ) \int f[\phi(x)] d\phi (x) f[ϕ(x)]dϕ(x)
→ \rightarrow (令u= ϕ \phi ϕ(x))
→ \rightarrow ∫ f ( u ) d u \int f(u)du f(u)du=F(u)+C=F( ϕ ( x ) \phi (x) ϕ(x))+C
更准确的说,不定积分不是导数的逆运算,而是微分的逆运算 d f ( x ) = f ( x ) ′ d x df(x)=f(x)'dx df(x)=f(x)dx
∫ d f ( x ) \int df(x) df(x)=f(x)+c
∫ f ( x ) ′ d x \int f(x)'dx f(x)dx=f(x)+c

第二类换元方法(函数代换微分变量)

适当的选择变量代换x= ψ \psi ψ(t),将积分 ∫ f ( x ) d x \int f(x)dx f(x)dx化为积分 ∫ f ( ψ ( t ) ) d ψ ( t ) \int f(\psi(t))d\psi(t) f(ψ(t))dψ(t)= ∫ f ( ψ ( t ) ) ψ ′ ( t ) d t \int f(\psi(t))\psi'(t)dt f(ψ(t))ψ(t)dt,其中x= ψ ( t ) \psi (t) ψ(t)是单调可导的函数且 ψ ′ ( t ) ≠ 0 \psi'(t) \neq 0 ψ(t)=0

分部积分法

设u(x),v(x)均有连续的导数,则
∫ u ( x ) d v ( x ) \int u(x)dv(x) u(x)dv(x)=u(x)d(x)- ∫ v ( x ) d u ( x ) \int v(x)du(x) v(x)du(x)
推导:
[u(x)v(x)]‘=u(x)v(x)’+u(x)'v(x)
∫ [ u ( x ) v ( x ) ′ + u ( x ) ′ v ( x ) ] d x \int [u(x)v(x)'+u(x)'v(x)]dx [u(x)v(x)+u(x)v(x)]dx= ∫ u ( x ) v ( x ) ′ d x + ∫ u ( x ) ′ v ( x ) d x \int u(x)v(x)'dx+\int u(x)'v(x)dx u(x)v(x)dx+u(x)v(x)dx=u(x)v(x)
→ \rightarrow
∫ u ( x ) v ( x ) ′ d x \int u(x)v(x)'dx u(x)v(x)dx=u(x)d(x)- ∫ v ( x ) u ( x ) ′ d x \int v(x)u(x)'dx v(x)u(x)dx
→ \rightarrow
∫ u ( x ) d v ( x ) \int u(x)dv(x) u(x)dv(x)=u(x)d(x)- ∫ v ( x ) d u ( x ) \int v(x)du(x) v(x)du(x)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不笑的鬼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值