参加第六届全球校园人工智能算法精英大赛,赛题为挑战赛道的基于无人机行为识别,最终在兢兢业业打榜一个月获得国家二等奖,好开心!!!
github代码链接:https://github.com/ylyaixi/life-victory
项目概述
通过深度学习、模式识别、图像处理等技术手段,设计并训练高效准确的人体行为识别模型,为安防领域提供更加智能、便捷的安全监测解决方案。
本项目旨在设计并训练高效准确的人体行为识别模型,我们的核心模型是动态边缘图卷积网络(DE-GCN),并在其框架内提出了新的多模态融合方案。该方案包含关节-骨骼(jbf)、关节-速度(jmf)以及关节-骨骼-速度(jbmf)等模态组合。此外,还融入了TeGCN、STTFormer和SkateFormer模型。对于初始数据方面,我们基于传统的关节(joint)、骨骼(bone)、运动(motion)三种基础模态,引入了角度(angle)模态,以更好地捕捉骨架中各关节的角度变化,从而增强模型对复杂行为的辨识能力。通过多模态与多模型的联合融合,有效补足了单一模态或模型的不足,提高了骨架数据的多维度特征表达能力,增强了模型的鲁棒性和精度。
DEGCN
下图为degcn基本模块,相关论文内容见github链接里面转载的论文
在degcn基础上,我们设计了多流融合的创新结构,并以图2.1的基本架构为基础构建了包含多个特征流的多模态融合网络,如双模态融合训练和三模态融合训练。具体而言,我增加了四种融合流:关节-骨骼融合流、关节-速度融合流、骨骼-速度融合流以及关节-骨骼-速度融合流。
2
图2.1.1 DEGCN的基础模块及单流训练方法
通过多流设计,模型可以在每个流中从不同模态的特征中提取有效信息,同时通过各流的组合进一步丰富模型的表达能力。相较于单流方法,该多模态融合结构显著提高了对复杂动作的识别性能,并在空间和时间维度上达到了更加精细和全面的特征建模。
参赛建议
有想法参加这个比赛的同学,根据我的参赛经验我建议是如果赛题有给出baseline先把这个跑通了解,然后自己去寻找一些能用的相关最新模型开始调试跑一遍看效果,可以在papers with code上面找最新相关论文附相关GitHub代码(需要科学上网)
最重要的一点,一定要在赛题qq群里面多加人进行交流,真的能学到很多,也能知道他们在用什么模型,用什么方法,当然是碰到好心人愿意分享的情况下哈哈,我还挺幸运碰到了挺多好心人嘻嘻。
赛后感想
在这个比赛中锻炼了我进行模型训练的能力,让我成功踏上炼丹一路哈哈哈哈,特别感谢我的小马学长,在他的推荐和鼓励下我开始了这个比赛并获得了成绩。
当然,让我在比赛中最开心的还是我交到了一些朋友,我们一起探讨,一起加油,真的很珍惜那段时光啊,充实而又快乐哈哈哈哈开心