豆包MarsCode:前缀和计算问题

问题描述

在这里插入图片描述


思路分析

问题理解

小S的任务是计算一个整数数组 nums 的前缀和。前缀和是指从数组开始到某个位置的所有元素的累加值,形成一个新数组。例如:

  • 输入数组:nums = [4, 5, 1, 6]
  • 前缀和数组:[4, 9, 10, 16]
    • 4 = 4
    • 9 = 4 + 5
    • 10 = 4 + 5 + 1
    • 16 = 4 + 5 + 1 + 6

解决步骤

我们需要构建一个新数组 prefixSum,其元素是输入数组 nums 的前缀和。关键步骤如下:

1. 定义结果数组

  • 新建一个数组 prefixSum,长度与输入数组 nums 相同,用于存储前缀和。

2. 特殊情况处理

  • 如果数组是空数组(nums.length == 0),直接返回空数组。

3. 逐步计算前缀和

  • 第一个位置的前缀和等于数组第一个元素本身:
    • prefixSum[0] = nums[0]
  • 从第二个元素开始,每个位置的前缀和等于前一个位置的前缀和加上当前元素:
    • prefixSum[i] = prefixSum[i - 1] + nums[i]

4. 遍历数组

  • 使用循环遍历数组,从第一个元素累加到最后一个元素,将每次计算的结果存入 prefixSum

伪代码总结

  1. 创建结果数组 prefixSum,长度与 nums 相同。
  2. 如果 nums 为空,则直接返回 prefixSum
  3. prefixSum[0] 初始化为 nums[0]
  4. 遍历数组,从第二个元素开始:
    • prefixSum[i] = prefixSum[i - 1] + nums[i]
  5. 返回结果数组 prefixSum

核心公式

  • 对于数组的第 i i i 个位置,前缀和的计算公式为:

    p r e f i x S u m [ i ] = p r e f i x S u m [ i − 1 ] + n u m s [ i ] prefixSum[i] = prefixSum[i - 1] + nums[i] prefixSum[i]=prefixSum[i1]+nums[i]

  • 边界条件:第一个元素:

    p r e f i x S u m [ 0 ] = n u m s [ 0 ] prefixSum[0] = nums[0] prefixSum[0]=nums[0]


参考代码(Java)

public class Main {
    public static int[] solution(int[] nums) {
  
        int[] prefixSum = new int[nums.length];
        if (nums.length == 0) return prefixSum;

        // 初始化第一个元素
        prefixSum[0] = nums[0];

        // 计算其余元素的前缀和
        for (int i = 1; i < nums.length; i++) {
            prefixSum[i] = prefixSum[i - 1] + nums[i];
        }

        return prefixSum;
    }

    public static void main(String[] args) {
        System.out.println(java.util.Arrays.equals(solution(new int[]{4, 5, 1, 6}), new int[]{4, 9, 10, 16}));
        System.out.println(java.util.Arrays.equals(solution(new int[]{2, 2, 2, 2}), new int[]{2, 4, 6, 8}));
        System.out.println(java.util.Arrays.equals(solution(new int[]{7, 3, 9, 4}), new int[]{7, 10, 19, 23}));
        System.out.println(java.util.Arrays.equals(solution(new int[]{1, 2, 3}), new int[]{1, 3, 6}));
    }
}

代码分析

1. 方法签名

public static int[] solution(int[] nums)
  • 输入
    • 参数 nums 是一个整数数组,表示输入数组。
  • 输出
    • 返回一个新的整数数组,表示 nums 的前缀和。

2. 初始化结果数组

int[] prefixSum = new int[nums.length];
  • 创建一个与 nums 等长的数组 prefixSum,用于存储计算出来的前缀和。

3. 边界条件检查

if (nums.length == 0) return prefixSum;
  • 如果输入数组是空的,则直接返回空的前缀和数组。

4. 初始化第一个前缀和

prefixSum[0] = nums[0];
  • 第一个位置的前缀和是输入数组的第一个元素。

5. 循环计算前缀和

for (int i = 1; i < nums.length; i++) {
    prefixSum[i] = prefixSum[i - 1] + nums[i];
}
  • 从数组的第二个元素开始:
    • 使用公式:prefixSum[i] = prefixSum[i - 1] + nums[i]
    • 当前的前缀和等于前一个前缀和加上当前元素值。

6. 返回结果

return prefixSum;
  • 返回计算好的前缀和数组。

运行过程解析

示例 1: 输入 [4, 5, 1, 6]

  • 初始化:prefixSum = [0, 0, 0, 0]
  • 步骤
    • prefixSum[0] = 4
    • prefixSum[1] = prefixSum[0] + nums[1] = 4 + 5 = 9
    • prefixSum[2] = prefixSum[1] + nums[2] = 9 + 1 = 10
    • prefixSum[3] = prefixSum[2] + nums[3] = 10 + 6 = 16
  • 结果[4, 9, 10, 16]

示例 2: 输入 [2, 2, 2, 2]

  • 初始化:prefixSum = [0, 0, 0, 0]
  • 步骤
    • prefixSum[0] = 2
    • prefixSum[1] = prefixSum[0] + nums[1] = 2 + 2 = 4
    • prefixSum[2] = prefixSum[1] + nums[2] = 4 + 2 = 6
    • prefixSum[3] = prefixSum[2] + nums[3] = 6 + 2 = 8
  • 结果[2, 4, 6, 8]
### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凭君语未可

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值