学习python数据挖掘的关联规则心得

一、关联规则的基本概念

1.简介:

1.关联规则是数据挖掘中的一个重要概念,用于发现数据集中不同项之间的有趣关联关系。

2.简单来说关联分析用于多个变量之间的关联,如果两个或者多个变量之间存在一定的关联,那么其中一个的状态救恩通过其他变量进行预测,关系图如下图所示:

2.关联规则的形式:

关联规则一般表示为X到Y  的形式,其中X和Y是项目集, 被称为规则的前提或前项(antecedent), Y被称为规则的结论或后项(consequent)。例如,在购物篮分析中,如果  X表示购买了面包和牛奶的事件, Y表示购买了鸡蛋的事件,那么规则X到Y  表示如果顾客购买了面包和牛奶,那么他们有可能也会购买鸡蛋。

二、关联规则的背景

1. 数据爆炸与信息需求增长

  • 数据积累的现状

    • 随着信息技术的飞速发展,各行业的数据量呈现出爆炸式增长。在商业领域,企业每天都会积累海量的交易数据,如超市的销售记录、电商平台的订单信息等。在互联网领域,用户的各种行为数据,包括浏览历史、点击记录、社交互动等数据也在不断累积。
    • 这些数据蕴含着丰富的信息,但原始数据往往是杂乱无章的,企业和研究人员迫切需要有效的工具和方法从这些海量数据中提取有价值的信息。
  • 对信息的深度挖掘需求

    • 简单的数据分析方法,如统计均值、方差等,已经不能满足企业决策的需求。企业需要更深入地了解数据中隐藏的关系,例如顾客购买行为背后的规律、不同产品之间的潜在联系等。
    • 关联规则正是为了满足这种对数据中隐藏信息的深度挖掘需求而产生的,它能够帮助企业从看似无关的数据中发现有意义的关联,进而优化业务流程、制定营销策略等。

2. 商业竞争推动

  • 精准营销的需要

    • 在竞争激烈的商业环境中,企业需要实现精准营销来提高市场竞争力。传统的营销方式,如大规模广告投放、通用的促销活动等,效果逐渐变得有限。
    • 通过关联规则分析,企业可以精准地了解顾客的购买偏好和组合模式。例如,通过分析发现购买某种高端电子产品的顾客,往往也会购买配套的高端周边产品,企业就可以针对这一群体开展精准营销活动,推荐相关产品,提高销售额。
  • 客户关系管理的提升

    • 良好的客户关系管理对于企业的长期发展至关重要。企业需要深入了解客户的需求和行为习惯,以提供个性化的服务和产品推荐。
    • 关联规则有助于企业在客户关系管理方面取得突破。比如,通过分析客户在不同时间段的购买行为关联,企业可以提前准备库存,优化产品供应,并且在合适的时间向客户推荐符合其消费习惯的产品,从而提高客户满意度和忠诚度。

3. 人工智能和数据挖掘技术的发展

  • 技术基础支撑

    • 关联规则的产生离不开人工智能和数据挖掘技术的发展。数据挖掘中的数据预处理技术、算法设计和优化等为关联规则的挖掘提供了基础支撑。
    • 例如,在数据预处理方面,能够对原始数据进行清洗、转换和集成,使得数据更加适合关联规则的挖掘。在算法方面,诸如 Apriori 算法和 FP - Growth 算法等关联规则挖掘算法的出现,为有效地挖掘数据中的关联关系提供了可能。
  • 交叉学科的融合推动

    • 关联规则是一个跨学科的研究领域,它融合了数据库技术、统计学、机器学习等多个学科的知识。这些学科的交叉融合促进了关联规则的发展。
    • 数据库技术为关联规则提供了数据存储和管理的平台,统计学为关联规则的评估指标(如支持度和置信度)提供了理论基础,机器学习中的一些算法思想和优化策略也被应用到关联规则挖掘算法的设计中。

三、关联规则的原理

1. 频繁项集原理

  • 项集与事务概念

    • 在关联规则挖掘中,数据被看作是一系列事务(Transaction)的集合。每个事务包含若干个项(Item),一个项集(Itemset)就是由一个或多个项组成的集合。例如,在购物篮分析中,一次购物记录就是一个事务,购物篮中的每件商品就是一个项,购买的多件商品组成的集合就是一个项集。
    • 假设超市中有商品集合 {面包,牛奶,鸡蛋,苹果,香蕉},那么 {面包,牛奶} 就是一个项集。
  • 频繁项集定义

    • 频繁项集是指在数据集中出现频率达到一定阈值(即最小支持度)的项集。支持度衡量了一个项集在整个数据集中出现的频繁程度,通过计算包含该项集的事务数与总事务数的比例得到。
    • 例如,如果设定最小支持度为 0.2,总共有 1000 个事务,那么只有在至少 200 个事务中出现的项集才能被称为频繁项集。如果 {面包,牛奶} 这个项集在 300 个事务中出现,它满足最小支持度要求,就是一个频繁项集。
  • 频繁项集的性质与作用

    • 单调性(Apriori 原理):如果一个项集是频繁的,那么它的所有非空子集也一定是频繁的。反之,如果一个项集是非频繁的,那么它的所有超集也一定是非频繁的。这是关联规则挖掘中一个非常重要的性质,如 Apriori 算法就是基于此原理设计的。
    • 作用:频繁项集是关联规则挖掘的基础。只有先找出频繁项集,才能从这些频繁项集中生成有意义的关联规则。因为只有频繁出现的项集之间的关联才有可能具有实际的价值,如果一个项集本身很少出现,那么基于它生成的关联规则可能只是偶然现象,不具有普遍意义。

2.支持度与置信度案例

  • 茶和咖啡的案例       

               某调研机构,调查统计了1000个用户的喝茶及喝咖啡的情况,1000个调研对象中,喝茶的用户有200人,喝咖啡的用户有800人,喝茶且喝咖啡的用户有150人,不喝茶也不喝咖啡的用户有150人,基于此些数据,查看(喝茶)->(喝咖啡)的支持度,置信度。图如下所示:

四、关联规则的应用场景

关联规则在多个领域有着广泛的应用场景,其中有:

1. 零售与商业领域

  • 商品陈列与布局优化

    • 原理:基于关联规则分析顾客购买商品的组合模式,将关联性强的商品放置在相邻位置,方便顾客寻找,从而提高顾客购物体验,增加购买的可能性。
    • 示例:在超市中,通过关联规则分析发现购买啤酒的顾客中有很大比例也会购买花生米。因此,将啤酒和花生米摆放在相邻货架,当顾客拿起啤酒时,更容易看到花生米,可能会引发额外的购买行为。
  • 促销策略制定

    • 原理:识别出经常一起被购买的商品组合,针对这些组合制定促销活动,如捆绑销售、组合折扣等,以提高销售额。
    • 示例:数据分析显示购买洗发水和护发素的关联度很高,商家可以推出 “洗发水 + 护发素” 的组合套餐,并给予一定的价格优惠,刺激消费者购买。
  • 库存管理

    • 原理:根据商品之间的关联关系,合理预测商品的销售量,进而优化库存水平。对于关联紧密且销售波动一致的商品,可协调它们的库存补货计划。
    • 示例:如果笔记本电脑和电脑包的销售存在强关联,当预计笔记本电脑销量增加时,相应地增加电脑包的库存,以满足市场需求,避免缺货或积压库存的情况。

2. 金融领域

  • 客户细分与精准营销

    • 原理:利用关联规则挖掘客户的金融行为特征,将具有相似行为模式的客户归为一类,针对不同类别的客户制定个性化的营销方案。
    • 示例:在银行中,通过分析客户的储蓄、贷款、信用卡消费等行为,发现频繁进行信用卡大额消费且按时还款的客户,对现金分期业务也有较高的接受度。因此,针对这类客户精准推送现金分期营销活动。
  • 风险评估与防范

    • 原理:分析不同金融事件或客户行为之间的关联,找出可能预示风险的模式。例如,某些交易行为的组合可能与欺诈行为相关。
    • 示例:如果发现短时间内在不同地点频繁进行刷卡交易,且同时伴随着账户密码修改等行为,可能存在信用卡被盗刷的风险。通过关联规则建立风险预警模型,及时发现并防范此类风险。
  • 投资组合分析

    • 原理:研究不同金融资产的价格波动、收益等之间的关联关系,构建合理的投资组合,以分散风险和提高收益。
    • 示例:分析发现黄金价格和美元汇率在长期存在反向关联关系,投资者可以根据这一规律,在投资组合中合理配置黄金和美元相关资产,当美元下跌时,黄金可能上涨,从而平衡整个投资组合的收益。

3. 医疗保健领域

  • 疾病诊断与预测

    • 原理:分析疾病症状、检验结果、病史等多方面数据之间的关联,辅助医生进行疾病诊断和预测疾病的发展。
    • 示例:通过分析大量的医疗记录,发现持续咳嗽、低热、盗汗等症状组合与肺结核疾病存在较高的关联度。当患者出现这些症状时,医生可重点考虑肺结核的诊断,并安排进一步的检查。
  • 药物疗效分析

    • 原理:研究药物使用、患者特征、治疗效果之间的关联,确定最佳的药物治疗方案。
    • 示例:在治疗某种疾病时,分析发现年龄较大、有高血压病史的患者,在使用药物 A 的同时配合药物 B,治疗效果更好。这为医生制定个性化的治疗方案提供依据。
  • 医疗资源配置

    • 原理:根据患者的疾病类型、治疗需求等关联信息,合理配置医院的医疗资源,如病床、医疗设备、医护人员等。
    • 示例:如果某段时间内流感患者增多,且关联规则显示流感患者大多需要进行血常规检查和抗病毒治疗,医院可提前调配更多的检验设备和抗病毒药物,合理安排呼吸科和检验科的医护人员。

4. 互联网与电子商务领域

  • 个性化推荐系统

    • 原理:通过分析用户的浏览历史、购买行为、收藏夹内容等数据之间的关联,为用户提供个性化的商品推荐、内容推荐或服务推荐。
    • 示例:在电商平台上,用户浏览了手机产品后,平台根据关联规则分析发现浏览手机的用户通常也对手机壳、手机膜等配件感兴趣,于是向该用户推荐这些配件产品。
  • 网站页面优化

    • 原理:了解用户在网站上不同页面之间的浏览关联,优化网站的页面布局和导航结构,提高用户体验。
    • 示例:分析发现用户在浏览新闻文章后,经常会点击相关的评论页面或专题页面。网站运营者可以将评论区和相关专题链接放在更显眼的位置,方便用户访问。
  • 网络广告投放优化

    • 原理:分析用户行为和广告点击、转化之间的关联,提高广告投放的精准度和效果。
    • 示例:如果发现观看体育赛事直播的用户对运动装备类广告的点击率较高,广告商可以在体育赛事直播页面精准投放运动装备广告,提高广告的点击率和转化率。

除了上述四个领域外,还有其他领域也都涉及到

五、关于关联规则的常用算法

1. Apriori 算法

  • 原理

    • 基于频繁项集性质:利用频繁项集的先验性质(如果一个项集是频繁的,那么它的所有子集也一定是频繁的;反之,若一个项集是非频繁的,那么它的所有超集也一定是非频繁的)来减少候选项集的数量。
    • 逐层搜索策略:从频繁 1 - 项集开始,通过不断组合和筛选,逐步生成频繁 2 - 项集、频繁 3 - 项集等。例如,在购物篮分析中,先找出所有频繁出现的单个商品,然后将这些单个商品项集两两组合,检查它们在数据集中的出现频率,筛选出频繁 2 - 项集。
  • 步骤

    • 候选集生成与计数:首先扫描数据集,统计每个单项的出现次数,确定频繁 1 - 项集。然后基于频繁 1 - 项集生成频繁 2 - 项集的候选项集,对候选项集进行计数,根据设定的最小支持度阈值筛选出频繁 2 - 项集。重复此过程,直到无法生成新的频繁项集。
    • 关联规则生成与筛选:对于每个频繁项集,将其划分为不同的子集,生成关联规则。例如,对于频繁项集 {面包,牛奶,鸡蛋},可生成 {面包,牛奶}⇒{鸡蛋} 等规则。计算每个规则的置信度,根据最小置信度阈值筛选出有意义的规则。
  • 优缺点

    • 优点:原理简单,易于理解和实现,适用于多种类型的数据挖掘任务,尤其是数据量和维度相对适中的情况。
    • 缺点:可能产生大量候选项集,尤其在数据项数多的情况下,会占用大量内存。多次扫描数据集,当数据量较大时效率较低。

2. Partition 算法(基于划分的算法)

  • 原理

    • 数据划分思想:将数据集划分为多个不重叠的子数据集,在每个子数据集上分别挖掘频繁项集,然后将各个子数据集上挖掘出的频繁项集合并起来,再进行进一步的筛选和处理。例如,可按时间或地域将购物数据划分为多个子数据集。
    • 局部与全局频繁项集处理:子数据集上的频繁项集称为局部频繁项集,合并后根据全局支持度阈值确定最终的全局频繁项集。
  • 步骤

    • 数据划分:根据一定标准(如时间、地域、类别等)将数据集划分为多个子数据集。
    • 局部频繁项集挖掘:在每个子数据集上,使用类似 Apriori 等算法挖掘频繁项集,得到局部频繁项集。
    • 全局频繁项集确定:将所有子数据集的局部频繁项集合并,统计每个项集在整个数据集中的出现次数,根据全局支持度阈值确定全局频繁项集。再根据全局频繁项集生成关联规则,并进行置信度筛选。
  • 优缺点

    • 优点:通过划分数据,能有效减少挖掘频繁项集时的计算量和内存消耗,在处理大规模数据集时可提高挖掘效率,且具有灵活性,可按不同标准划分数据。
    • 缺点:划分标准的选择对算法性能和结果影响大,不合理的划分可能导致频繁项集不准确或挖掘效率不高。合并局部频繁项集和确定全局频繁项集也需要一定成本。

3. DHP 算法(Direct Hashing and Pruning 算法)

  • 原理

    • 哈希技术与剪枝策略:利用哈希技术来快速估计候选项集的支持度,同时采用剪枝策略来减少候选项集的数量。在生成频繁项集的过程中,通过哈希表来存储和查找项集的信息,对不可能成为频繁项集的候选项集进行剪枝。
  • 步骤

    • 第一次扫描数据集:在第一次扫描数据集时,使用哈希函数将项集映射到哈希表中,同时统计每个单项的出现次数,确定频繁 1 - 项集。
    • 候选项集生成与剪枝:基于频繁 1 - 项集生成候选项集,通过哈希表中的信息对候选项集进行剪枝,去除那些支持度估计不满足阈值的候选项集。然后对剩余的候选项集进行实际的支持度计算(第二次扫描数据集),确定频繁 2 - 项集。
    • 后续频繁项集挖掘:重复上述步骤,不断生成和筛选更高层次的频繁项集,直到无法生成新的频繁项集。最后根据频繁项集生成关联规则并筛选。
  • 优缺点

    • 优点:通过哈希技术和剪枝策略,在一定程度上减少了候选项集的数量和计算量,提高了挖掘效率,尤其在数据相对密集的情况下效果较好。
    • 缺点:哈希函数的设计和选择对算法性能有影响,不合适的哈希函数可能导致哈希冲突过多,影响算法的准确性和效率。算法实现相对复杂。

4. MSApriori 算法(Multistage Apriori 算法)

  • 原理

    • 多阶段挖掘策略:MSApriori 是对 Apriori 算法的改进,采用多阶段挖掘的方式。在不同阶段采用不同的支持度阈值,前期阶段使用较高的支持度阈值来快速筛选出最频繁的项集,后期阶段逐渐降低支持度阈值,以挖掘出那些出现频率相对较低但仍有意义的项集。
  • 步骤

    • 第一阶段:设定一个较高的初始支持度阈值,使用类似 Apriori 的方法挖掘频繁项集,得到第一阶段的频繁项集。
    • 后续阶段:逐渐降低支持度阈值,用上一阶段得到的频繁项集作为基础,重新组合和筛选,生成新的候选项集并计算支持度,得到新的频繁项集。这个过程持续进行,直到达到预定的停止条件(如支持度阈值降低到一定程度或无法生成新的频繁项集)。
    • 关联规则生成:与 Apriori 算法类似,根据最终得到的频繁项集生成关联规则,并进行置信度筛选。
  • 优缺点

    • 优点:通过多阶段的挖掘和动态调整支持度阈值,能够更全面地挖掘出不同频率的频繁项集,提高了挖掘的效果,对于数据分布不均匀的数据集有较好的适应性。
    • 缺点:由于需要多个阶段的挖掘,算法的复杂度相对较高,尤其是在数据量较大且数据分布非常复杂的情况下,计算量和时间成本会增加。

5. FP - Growth 算法

  • 原理

    • 构建 FP - Tree 数据结构:采用频繁模式树(FP - Tree)来存储数据集中的频繁项集信息。FP - Tree 是一种树形结构,将频繁项按照出现频率排序,并将事务中的项映射到树中的节点。例如,频繁出现的商品在树的上层,不那么频繁的在下层。
    • 基于 FP - Tree 的挖掘:通过对 FP - Tree 的遍历和挖掘来生成频繁项集。该算法只需对数据集进行两次扫描,第一次扫描构建 FP - Tree,第二次扫描基于 FP - Tree 挖掘频繁项集和关联规则。在挖掘过程中,利用节点的路径信息和计数信息,避免大量候选项集的生成。
  • 步骤

    • 构建 FP - Tree:首先扫描数据集,统计每个项的出现次数,确定频繁项并排序。再次扫描数据集,将每个事务中的频繁项按排序后的顺序插入 FP - Tree,记录节点计数信息。
    • 挖掘频繁项集和关联规则:从 FP - Tree 的根节点开始,递归遍历树的分支,找出频繁项集。利用节点路径和计数信息避免生成大量候选项集。然后根据频繁项集生成关联规则,计算置信度并筛选。
  • 优缺点

    • 优点:挖掘频繁项集效率高,尤其适用于大规模数据集。只需要两次扫描数据集,且避免大量候选项集生成,在时间和空间复杂度上表现较好。
    • 缺点:FP - Tree 的构建和维护需要内存空间,频繁项多的时候树结构复杂,内存消耗大。算法实现相对复杂,对编程人员要求较高。

六、关联规则实战应用

1.实例一

         背景:

一个小超市,A,B,C,D,E,F分别代表不同的产品,如下表所示,列出了5种产品购买的记录,每行代表某一用户的单次购买记录,现在来分析各个超市商品的货架摆放的问题,以增加用户的购买转化率。

代码如下所示

七、总结

通过关联规则挖掘,我们可以从超市的销售数据中发现有价值的信息,为超市的经营决策提供支持。未来,可以进一步探索其他关联规则挖掘算法,或者结合其他数据分析技术,如聚类分析、时间序列分析等,以更全面地了解顾客行为和市场趋势,提升超市的竞争力。

在实际应用中,还可以根据具体情况对算法进行调整和优化,例如设置不同的支持度和置信度阈值、采用不同的数据预处理方法等,以获得更符合实际需求的结果。同时,随着数据量的不断增加和数据类型的多样化,也可以考虑使用分布式计算框架来提高算法的运行效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值