引言
近年来,大语言模型(LLM)的本地部署成为开发者与企业关注的核心课题。DeepSeek 67B作为国产顶尖开源大模型,凭借其强大的生成能力与多场景适配性,成为众多开发者的首选。然而,其庞大的参数规模(约260GB)与高硬件需求,也让部署过程充满挑战。
本文将从零基础出发,详解两种主流部署方案:高性能的Hugging Face+DeepSpeed/vLLM方案与轻量化的Ollama快速启动方案,覆盖从企业级生产环境到个人开发的完整链路,助你轻松避坑!
一、部署前准备:硬件与模型选择
1.1 模型版本确认
- 官方模型来源:
- Hugging Face仓库:deepseek-ai/deepseek-llm-67b-base
- 企业定制版:需联系DeepSeek官方申请权限(支持私有化部署与微调)。
- “满血版”定义:完整参数(约260GB)、未量化、无剪枝版本,适合追求极致性能的场景。
1.2 硬件需求对照表
资源类型 | 最低配置 | 推荐配置 |
---|---|---|
GPU | 2×A100 40GB | 4×H100 80GB |
内存 | 256GB DDR4 | 512GB+ DDR5 |
存储 | 500GB SSD | 1TB NVMe |
注:Ollama方案可通过量化大幅降低显存需求(最低单卡24GB即可运行)!
二、专业级部署:Hugging Face + DeepSpeed/vLLM
2.1 环境搭建
推荐使用NVIDIA官方镜像:
docker run