根据题目我们得知如果想要找到答案,如果用暴力做法时间复杂度会很大,因此我们需要用动态规划来做,我们用dp数组来记录最长的上升子序列,而对于dp[i] 前i个dp中,如果该数可以接在某个最长子序列的后面,就取其二的最大值,最后在进行一遍遍历,找出最大值即可
上代码
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 5050;
int dp[N] = {0};//初始化dp数组
int main(void)
{
int n; cin >> n;
int *a = new int[n + 10];
a[0] = 0;
for(int i = 1; i <= n; i++) cin >> a[i];
for(int i = 1; i <= n; i++){//统计以i为结尾的数列中最长子序列
dp[i] = 1;//初始化dp[i]为其本身
for(int j = 1; j <= i; j++){
if(a[i] > a[j]) dp[i] = max(dp[j] + 1, dp[i]);//如果当前访问到的数字小于a[i]说明该数可以录入,并寻得最大值
}
}
int ans = 0;
for(int i = 1; i <= n; i++) ans = max(ans, dp[i]);
cout << ans << endl;
return 0;
}