最长上升子序列(dp)

本文介绍了一种使用动态规划算法解决最长上升子序列问题的方法,通过初始化dp数组并遍历输入数组,计算以每个数结尾的最长上升子序列,最终输出整个序列的最大长度。
摘要由CSDN通过智能技术生成

 根据题目我们得知如果想要找到答案,如果用暴力做法时间复杂度会很大,因此我们需要用动态规划来做,我们用dp数组来记录最长的上升子序列,而对于dp[i] 前i个dp中,如果该数可以接在某个最长子序列的后面,就取其二的最大值,最后在进行一遍遍历,找出最大值即可

上代码

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N = 5050;
int dp[N] = {0};//初始化dp数组

int main(void)
{
	int n; cin >> n;
	int *a = new int[n + 10];
	
	a[0] = 0;
	for(int i = 1; i <= n; i++) cin >> a[i];
	for(int i = 1; i <= n; i++){//统计以i为结尾的数列中最长子序列
		dp[i] = 1;//初始化dp[i]为其本身
		for(int j = 1; j <= i; j++){
			if(a[i] > a[j]) dp[i] = max(dp[j] + 1, dp[i]);//如果当前访问到的数字小于a[i]说明该数可以录入,并寻得最大值
		}
	}
	int ans = 0;
	for(int i = 1; i <= n; i++) ans = max(ans, dp[i]);
	
	cout << ans << endl;
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值