数独技巧:证明

4 篇文章 0 订阅
1 篇文章 0 订阅

前言:

        生活中无聊的小游戏技巧,可以直接访问这个网站https://sudoku.com/zh/shu-du-gui-ze查看里面的做题技巧,一般而言,掌握这些技巧,专家模式没有什么问题,后面的证明过程,我会后续更新。

热身预备

        1,在专家模式20%前,不需要任何笔记的做法-俄罗斯方块堆积法-区跨跨域推出-井式相交基本都是都是对唯一数的扩展。

        2,快速找对填格的思路方式,提高效率

        3,网站的唯一数证明过程以及后续我的做法证明过程

第一章:定义

        定义1:行和列的数字不能重复

        定义2:能够使用的数字一共只有九个

        定义3:由最少九个数字组合而成的正方形,称为‘宫‘;

        定义4:将每一个数字所占的长度称为‘位’,在3x3的宫内,各行各列各有9位;

        定义5:将一个宫格内的数字转化为一个行的数字,3位作为一’行节‘,每各三位组成由3位组成’列节‘

        定义6:对于没有被其他数字影响到排序的”数字排列“称为”无顺序排列数字“

第二章:定理

        定理1:在3x3的九宫格内,每行每列的数字都不相同

        定理2:在3x3的九宫格内,每列每行的数字均有自己的顺序

        定理3:在3x3的九宫格内,每个宫格内部都有自己的顺序

第三章:推论

        推论1:推论用于解法而解法需要更多的证明(明天会更新)

第四章:证明数独的存在

        知道数独一般为九宫格(定义3),而且规则是各个行、列的数字均不相等(定义1),首先,如果要证明数独存在的话,我们先上一个图:

        

123987456
456123987
789456123
231<左移一位<左移一位<左移一位
564<左移一位<左移一位…………
897<左移一位<左移一位
312<左移一位<左移一位
645<左移一位<左移一位
978<左移一位<左移一位……

之后没有填写的数字只要按照其中的错位顺序进行填满即可,大家可以明显发现这组数独很有规律,我们可以再从最简单的开始。

第一步基础九宫格    

y/xy_1y_2y_3
x_1123
x_2456
x_3789

将其标注然后:我们将它转化成一行

123456789
x_1x_1x_1x_2x_2x_2x_3x_3x_3
y_1y_2y_3y_1y_2y_3y_1y_2y_3
G_{1.1}G_{1.2}G_{1.3}G_{2.1}G_{2.2}G_{2.3}G_{3.1}G_{3.2}G_{3.3}

如此,我们在配置接下来的所有数字只要G_{x.y}均不等于以上第四行的数字即可,我们来做一下

G_{1.1}G_{1.2}G_{1.3}G_{2.1}G_{2.2}G_{2.3}G_{3.1}G_{3.2}G_{3.3}
G_{1.2}G_{1.3}G_{1.1}G_{2.2}G_{2.3}G_{2.1}G_{3.2}G_{3.3}G_{3.1}
G_{1.3}G_{1.1}G_{1.2}G_{2.3}G_{2.1}G_{2.2}G_{3.3}G_{3.1}G_{3.2}

整合下来就是

12345678

9

231564897
312645978

第二行<左移一个位

第三行<左移两个位

如上述所述,接下来我们再将它变回原来的九宫格内部,同行不同列:

123
456
789
231
564
897
312
645
978

后续更新2024-8-18

“这样我们就完成了三个宫和三列,而如果要再完成后续的行列,则需要动用G_{x.y}了,但是我们这里只证明数列的存在,所以以上只是数列的一个必要却不充分的条件,明天我会将它的充分条件补充完毕,即动用G_{x.y}来说明整个数列的存在,并且证明定理4.“

更新:动用G_{x.y}

之前我们动的都是列“y”的下标,这次我们将只动‘x'的下标。

如图:

G_{2.1}G_{2.2}G_{2.3}G_{3.1}G_{3.2}G_{3.3}G_{1.1}G_{1.2}G_{1.3}
G_{2.2}G_{2.3}G_{2.1}G_{3.2}G_{3.3}G_{3.1}G_{1.2}G_{1.3}G_{1.1}
G_{2.3}G_{2.1}G_{2.2}G_{3.3}G_{3.1}G_{3.2}G_{1.3}G_{1.1}G_{1.2}

结果如下:

45678912

3

564897231
645978312

然后转换成

123456
456789
789123
231564
564897
897231
312645
645978
978312

我们发现一个规律:

                                1,先从左上角的九宫格看起

                                2,从第二行开始到第三行的九宫格内部每一个数字都与左边一个九宫格数字相差两列并且空一行

                                3,再看下面一个2开头的九宫格,看到第一行的规律都是左边上一行对应右侧九宫格内相应数字的三列

如此,我们利用这个特性完成这张表

123456789
456789123
789123564
231564897
564897231
897231645
312645978
645978312
978312456

但是发现最后一列的规律显然跟我们上面的总结有所出入。——只隔了两列

重新引入这张图然后观察结果

得出一个计算公式:用于记下下标

                                1,第一行:下标相加并减一(最好是乘法)

                                2,第二行:下标相加并加一

                                3,第三行:下标相加并加三

y/xy_1y_2y_3
x_1123
x_2456
x_3789

如此数独的存在被证明了

 第五章:坐标的变动产生的影响

将之前的两幅坐标插入并按照规律补齐

G_{1.1}G_{1.2}G_{1.3}G_{2.1}G_{2.2}G_{2.3}G_{3.1}G_{3.2}G_{3.3}
G_{1.2}G_{1.3}G_{1.1}G_{2.2}G_{2.3}G_{2.1}G_{3.2}G_{3.3}G_{3.1}
G_{1.3}G_{1.1}G_{1.2}G_{2.3}G_{2.1}G_{2.2}G_{3.3}G_{3.1}G_{3.2}
G_{2.1}G_{2.2}G_{2.3}G_{3.1}G_{3.2}G_{3.3}G_{1.1}G_{1.2}G_{1.3}
G_{2.2}G_{2.3}G_{2.1}G_{3.2}G_{3.3}G_{3.1}G_{1.2}G_{1.3}G_{1.1}
G_{2.3}G_{2.1}G_{2.2}G_{3.3}G_{3.1}G_{3.2}G_{1.3}G_{1.1}G_{1.2}
G_{3.1}G_{3.2}G_{3.3}G_{1.1}G_{1.2}G_{1.3}G_{2.1}G_{2.2}G_{2.3}
G_{3.2}G_{3.3}G_{3.1}G_{1.2}G_{1.3}G_{1.1}G_{2.2}G_{2.3}G_{2.1}
G_{3.3}G_{3.1}G_{3.2}G_{1.3}G_{1.1}G_{1.2}G_{2.3}G_{2.1}G_{2.2}

 可以发现每一个坐标在行在列都是不一样的(定义一)

如果:只动G_{1.1}G_{1.2}做交换,所有的G_{1.1}G_{1.2}的位置均可以被变动,也就说,所有行的这两个坐标所对应的数字1,2都可以相互交换自己的位置,且是必须两个都进行交换;

解释:第一行的G_{1.1}与第二行G_{1.2}进行了交换,他们自己行内的G_{1.1}G_{1.2}就会产生重复,于此重复的G_{1.1}G_{1.2}就要在进行交换,最少的交换次数就是去到各交换的行内,当然也可以交换所有行的G_{1.1}G_{1.2}

因此,当数字被完全打乱了之后,数独可以视为完全随机的,但是随着逐渐增多的数字,慢慢的变得确定了起来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值