1随机事件与概率
1.1随机事件及其运算规律
1.1.1运算
- 交换律
- 结合律
- 分配律
- 德摩根律
1.2概率的定义及其确定方法
1.2.1概率的统计定义
频率 设在 n 次试验中,事件 A 发生了(A)次,则称
为事件 A 发生的频率。
1.2.2概率的统计定义
在一组恒定不变的条件下,将某试验重复进 行n次,随着n 增大,事件A发生的频率,总 在某一固定常数p 左右摆动,我们称这个稳定值 p 为事件A的概率, 记作 P(A). f (A)
性质:
非负性:
规范性:
可列可加性:
1.2.3确定概率的古典方法
条件:
- 试验的样本空间只包含有限个元素
- 试验中每个基本事件发生的可能性相同
古典概率的确定:
设试验 E 的样本空间由n 个样本点构成, A 为 E 的任意一个事件,且包含 m 个样本点,则事 件 A 出现的概率记为:
常用计数方法:
1.2.3.1重复组合
从 n 个不同元素中每次取出一个, 放回后再取下一个,如此连续取r次所得的组合 称为重复组合,此种重复组合数共有:
1.2.3.2不全相异元素的排列
在n个元素中,有m类不同元素、每类各有k1 , k2 ,… km 个,将这n个元素作全排列,共有如下种方式:
或:
1.2.3.3环排列
从n个不同元素中,选出m个不同的元素排成一 个圆圈的排列,共有:
1.2.4古典概型基本模型
1.2.4.1无放回地摸球
设袋中有4 只白球和 2只黑球, 现从袋中无 放回地依次摸出2只球,求这2只球都是白球的概率
解答较简单。
1.2.4.2有放回地摸球
设袋中有4只红球和6只黑球,现从袋中有放 回地摸球3次,求前2次摸到黑球、第3次摸到红球 的概率.
基本事件总数为,A 所包含基本事件的个数为:
1.2.4.3分球入盒模型(盒子容量无限)
把 4 个球放到 3个盒子中去,求第1、2个 盒子中各有两个球的概