概率论与数理统计(随机事件与概率)

1随机事件与概率

1.1随机事件及其运算规律

1.1.1运算
  1. 交换律
  2. 结合律
  3. 分配律
  4. 德摩根律

1.2概率的定义及其确定方法

1.2.1概率的统计定义

频率 设在 n 次试验中,事件 A 发生了\mu(A)次,则称为事件 A 发生的频率。

1.2.2概率的统计定义

在一组恒定不变的条件下,将某试验重复进 行n次,随着n 增大,事件A发生的频率f_{n}(A),总 在某一固定常数p 左右摆动,我们称这个稳定值 p 为事件A的概率, 记作 P(A). f (A)

性质

非负性:

规范性:

可列可加性:

1.2.3确定概率的古典方法

条件:

  • 试验的样本空间只包含有限个元素
  • 试验中每个基本事件发生的可能性相同

古典概率的确定:

设试验 E 的样本空间由n 个样本点构成, A 为 E 的任意一个事件,且包含 m 个样本点,则事 件 A 出现的概率记为:

常用计数方法:

1.2.3.1重复组合

从 n 个不同元素中每次取出一个, 放回后再取下一个,如此连续取r次所得的组合 称为重复组合,此种重复组合数共有:

1.2.3.2不全相异元素的排列

在n个元素中,有m类不同元素、每类各有k1 , k2 ,… km 个,将这n个元素作全排列,共有如下种方式:

或:

1.2.3.3环排列

从n个不同元素中,选出m个不同的元素排成一 个圆圈的排列,共有:

1.2.4古典概型基本模型
1.2.4.1无放回地摸球

设袋中有4 只白球和 2只黑球, 现从袋中无 放回地依次摸出2只球,求这2只球都是白球的概率

解答较简单。

1.2.4.2有放回地摸球

设袋中有4只红球和6只黑球,现从袋中有放 回地摸球3次,求前2次摸到黑球、第3次摸到红球 的概率.

基本事件总数为10\times 10\times10=10^{3},A 所包含基本事件的个数为:6\times6\times4

1.2.4.3分球入盒模型(盒子容量无限)

把 4 个球放到 3个盒子中去,求第1、2个 盒子中各有两个球的概

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

背水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值