GRPO训练下的参考模型选择

一、普通全量微调模型

核心机制:模型克隆
  1. 深拷贝创建

    • 通过create_reference_model(model)对当前模型进行完全复制(包括所有层和参数)。
    • 示例代码:
      import copy
      def create_reference_model(model):
          ref_model = copy.deepcopy(model)
          ref_model.requires_grad_(False)  # 冻结参数
          ref_model.eval()                 # 评估模式
          return ref_model
      
    • 技术细节:深拷贝会递归复制所有子模块,确保参考模型与原始模型完全独立。
  2. 参数冻结与评估模式

    • requires_grad_(False):关闭梯度计算,防止反向传播影响参考模型。
    • eval():关闭Dropout和BatchNorm等训练专用层,保证输出稳定性。
  3. 内存占用分析

    • 原始模型参数量为N时,总内存占用≈2N。
    • 典型场景:7B参数的模型需要约14GB显存(假设FP32精度)。
  4. 同步机制(可选)

    • 启用sync_ref_model后,通过回调函数周期性将参考模型参数替换为当前模型:
      class SyncRefModelCallback:
          def on_step_end(self, args, state, control, **kwargs):
              with torch.no_grad():
                  for ref_param, model_param in zip(ref_model.parameters(), model.parameters()):
                      ref_param.copy_(model_param.detach())
      
    • 应用场景:允许参考模型跟随训练进度,实现动态策略约束。

二、PEFT微调模型

核心机制:动态适配器切换
  1. PEFT架构特性

    • 典型实现(如LoRA):在原始模型基础上添加低秩适配器矩阵。
    • 参数分布:基础模型参数冻结(占比≈95%),仅训练适配器(占比≈5%)。
  2. 禁用适配器原理

    • 上下文管理器disable_adapter()的工作流程:
      class LoraModel:
          def disable_adapter(self):
              original_forward = self.layer.forward
              self.layer.forward = self.original_forward  # 恢复原始前向传播
      
    • 技术效果:前向计算时绕过所有适配器层,等同于原始模型。
  3. 内存优化原理

    • 不需要存储额外模型实例,节省≈N显存。
    • 示例对比:7B模型PEFT微调时,显存占用从14GB降至≈7.5GB。
  4. 梯度计算隔离

    • 即使禁用适配器,反向传播时仍只会更新适配器参数。
    • 实现方式:通过PyTorch的torch.no_grad()上下文管理器:
      with model.disable_adapter():
          with torch.no_grad():  # 确保不计算参考模型梯度
              outputs = model(inputs)
      

三、DeepSpeed ZeRO-3模式

核心机制:权重重加载
  1. ZeRO-3分片原理

    • 参数分布:模型参数被划分到多个GPU,单个设备只保留部分参数。
    • 示例:8 GPU训练时,每个GPU存储约1/8的参数和优化器状态。
  2. 无法深拷贝的根本原因

    • 分片后的参数无法通过常规方式访问完整副本。
    • 尝试复制会引发错误:RuntimeError: Cannot access full parameter outside of forward/backward
  3. 重加载实现细节

    • 从磁盘或缓存重新初始化模型:
      model_id = "qwen/Qwen1.5-7B"
      ref_model = AutoModelForCausalLM.from_pretrained(
          model_id,
          device_map="auto",
          torch_dtype=torch.bfloat16
      )
      
    • 优化技巧:使用accelerate库的disk_offload功能减少内存压力。
  4. 分布式一致性保证

    • 通过DeepSpeed的broadcast_parameters()确保所有GPU加载相同初始权重。
    • 关键代码:
      deepspeed.utils.broadcast_parameters(ref_model.state_dict())
      

四、KL散度计算流程

无论采用何种参考模型机制,最终目标都是计算:
D K L ( π θ ∣ ∣ π r e f ) = E x ∼ π θ [ log ⁡ π θ ( x ) − log ⁡ π r e f ( x ) ] D_{KL}(\pi_{\theta} || \pi_{ref}) = \mathbb{E}_{x \sim \pi_{\theta}}[\log \pi_{\theta}(x) - \log \pi_{ref}(x)] DKL(πθ∣∣πref)=Exπθ[logπθ(x)logπref(x)]

  1. 计算步骤

    def compute_kl_divergence(model, ref_model, inputs):
        with torch.no_grad():
            ref_logits = ref_model(**inputs).logits
        current_logits = model(**inputs).logits
        
        kl = F.kl_div(
            F.log_softmax(current_logits, dim=-1),
            F.softmax(ref_logits.detach(), dim=-1),
            reduction='batchmean'
        )
        return kl
    
  2. 各机制下的实现差异

    • 普通微调:直接调用ref_model计算
    • PEFT:在disable_adapter()上下文中用同一模型计算
    • ZeRO-3:使用独立加载的ref_model计算

五、选型建议

微调类型适用场景显存开销计算效率
普通全量微调单卡/多卡非ZeRO环境
PEFT微调低显存设备(如消费级GPU)
DeepSpeed ZeRO-3超大模型训练(如>20B参数)最低较低

典型决策流程:

是否需要训练超大模型(>20B)?
├─ 是 → 采用DeepSpeed ZeRO-3
└─ 否 → 显存是否充足(如A100 80G)?
         ├─ 是 → 普通全量微调
         └─ 否 → 使用PEFT微调

### GRPO算法概述 GRPO(Group Relative Policy Optimization)是一种新型的强化学习算法,其设计目标是在保持传统强化学习方法(如PPO)稳定性的同时,减少对昂贵的价值网络(Value Network)的依赖[^1]。这种特性使得GRPO在计算资源有限的情况下更具吸引力。 #### 主要特点 相比于基于价值网络的传统强化学习算法(例如PPO),GRPO的主要区别在于它采用了一种全新的基线估计机制。具体来说,GRPO利用“分组输出相互比较”的方式来构建基线,这种方法能够有效替代传统的价值函数近似器[^2]。通过这种方式,GRPO不仅降低了模型复杂度,还减少了训练过程中的计算开销。 --- ### GRPO算法的实现原理 GRPO的核心思想是通过分组的方式对策略输出进行对比分析,从而动态调整策略参数。以下是其实现的关键环节: 1. **分组策略评估** 在每次更新迭代中,GRPO会将当前环境下的动作分成若干小组,并在同一组内的不同动作之间进行相对表现的比较。这些比较的结果会被用来估算每一步的动作优势值(Advantage Value)。此过程无需显式的值函数拟合即可完成基线估计。 2. **无监督基线估计** 基于上述分组比较的思想,GRPO可以自动生成一组无偏的基线数据作为参考标准。这一步骤完全绕过了传统RL算法中复杂的值函数优化流程,大幅简化了整个系统的架构设计。 3. **高效梯度更新规则** 结合前述两部分工作——即经过改进的优势函数定义以及自动化的基线生成技术——最终形成了适用于GRPO框架的一套全新参数更新方程。该公式能够在保证收敛速度的前提下进一步降低样本需求量[^3]。 ```python def grpo_update(policy, trajectories): groups = group_trajectories(trajectories) # 将轨迹划分为多个组 advantages = [] baselines = [] for g in groups: rewards_within_group = compute_rewards(g) # 使用分组比较的方法计算优势值和基线 advantage_g = estimate_advantages(rewards_within_group)[^2] baseline_g = calculate_baseline_from_comparisons(rewards_within_group) advantages.append(advantage_g) baselines.append(baseline_g) policy.update_parameters(advantages, baselines) # 更新策略参数 ``` --- ### 实际应用场景 作为一种高效的强化学习工具,GRPO已被成功应用于多种高维度连续控制任务之中。特别是在大型预训练语言模型领域内,比如DeepSeek团队开发出来的R1系列零样本对话系统里也采用了类似的思路来进行微调操作。实验表明,在不借助任何外部奖励信号引导条件下仅依靠内部逻辑推导便可以让机器具备超越人类水平的表现力! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

背水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值