大模型会重塑代码学习/编程

随着 AI 技术的不断发展,AI大模型正在重塑软件开发流程,从代码自动生成到智能测试,未来,AI 大模型将会对软件开发者、企业,以及整个产业链都产生深远的影响。

欢迎与我们一起,从 AI 大模型的定义、应用场景、优势以及挑战等方面,探讨 AI 是如何重塑软件开发的各个环节以及带来的新的流程和模式变化,并展望未来的发展趋势~

提醒:在发布作品前,请将不需要的内容删除。

方向一:流程与模式介绍【传统软件开发 VS AI参与的软件开发】

提示:对软件开发传统流程与模式进行介绍,并对比AI在软件开发中应用的具体场景,如代码生成工具、智能调试等,展现AI带来的不同之处。

我7月到8月当时自己一直都想使用ai进行代码开发,起始点就是自己参加1024程序员节!在这里,说一下,对我启发比较深刻的一句话吧!

开源竞争

(当你无法彻底掌握一个技术的时候,你就开源这个技术,让更多的人了解这个技术,培养出更多的技术依赖,让更多的人帮助你完善你的技术,那么你会说,这不就是在砸罐子吗?一个行业里面总会有人砸罐子的,你不如先砸还能听个响)

这是一个很厉害的学长在介绍stable profession(合成ai明信片,照相师这个行业是会被颠覆的)的时候有所介绍的内容(我比较的感动的地方在于,我当时整个人被困住了,不知道自己到底准备做什么,因为从5月到7月已经有了2个月的积累之后,但是:),

躺平成长-代码开发(08)-第八天-CSDN博客

躺平成长_江河之流的博客-CSDN博客

以上,是我自己的文章链接,我每天都会花费固定的两个小时的实践去进行搭建我自己的小程序,通过实践所进行学习的知识是一个更加快速的学习知识。

方向二:分析 AI 在软件开发流程中带来的优势,分析面临的挑战及应对策略

提示:如提高开发效率、减少错误等,并分析有AI参与的软件开发,可能会面临的挑战和问题,以及开发者应对策略。

我觉得人们应该努力在CSDN中形成一套属于自己软件设计理念,因为对于每个人而言,属于自己的软件设计理念就是属于自己创造力和核心价值(同时我觉得随着ai解决了程序员最讨厌的繁琐的代码部分之后),更加考验一个人程序员,我觉得会产生一些新的岗位:

类如:

软件视觉设计工程师

软件认知心理工程师

软件实践运用工程师

以下是针对您提到的三个职位的职责概述:

1. **软件视觉设计工程师**:


   - 负责焊接、搬运、切割等类型机器人工作站的软件开发,包括集成系统、底层驱动;开发工作侧重软件的架构设计、模块设计、代码编写


   - 根据不同项目的机器人不同作业场景,进行相应的设计和开发。


   - 熟练掌握C/C++编程语言,了解视觉硬件整合、软件应用、系统测试领域工作经验,能在自动化设备中整合相机、光源、镜头、视觉软件及控制系统。


   - 熟练使用VisionPro或Halcon,Opencv等视觉库进行项目的开发。


   - 具有良好的沟通协调能力,团队精神与合作意识,较好的英语读写能力。

2. **软件认知心理工程师**:


   - 深度参与心理学科研类项目的需求分析,协调相关部门和单位,主导对软件研发类项目进行管理和交付。


   - 作为核心架构师,对心理学科研类软件系统进行详细设计,带领研发团队交付满足需求的软件系统。


   - 具有心理学、认知神经科学、生物医学等相关背景的博士学位,具有较强的英文阅读、写作能力和高级统计技术。


   - 具有计算建模、编程、电生理数据处理等技术者优先。


   - 有较强的合作意识和团队精神。

学习的路线,得发生一个改变,这标志着对于以前的你而言,你可能学会一个架构你就是一个非常厉害的存在,但是现在的情况是不一样的,程序员需要开始进行组合技能的修炼:架构师+心理学:架构师+体育学:架构师+。。。。,

传统的架构师不是也会进行分析吗?有所区别,即使传统的架构师会进行分析,也会出现相关的问题(设计出来的应用会缺少一些心理学知识(用户使用起来不是很顺手),因为这个学习行业趋势(我觉得培训机构不会消失,但是培训机构需要进行一定程度上的转型与升级。),)

3. **软件实践运用工程师**:


   - 负责项目的现场实施工作,制定项目实施培训计划,给客户进行系统的培训和演示。
   - 负责项目实施跟进,协助项目管理工作。
   - 负责项目实施过程中,与客户进行工作沟通与协调,系统问题的记录与解决,记录用户提出意见与建议。
   - 负责编写公司系统的使用手册及相关帮助文档。
   - 负责系统问题记录、分类、总结工作,协助项目交付。
   - 协助研发部做好软件的相关软件测试工作。

这个我自己想的,其实我觉得软件生命周期工程师会更好一点,因为对于一个架构师而言,对于生命周期的掌握往往可以最大程度上面考验一个架构师的基础能力,但是因为架构实际上也可以交给ai进行,架构师在考虑这些事情的时候,要从多个角度对其进行考虑。

开源竞争:

(当你没有办法完全掌握技术的时候就开源掉,培养出更多的技术依赖,让更多人帮助你完善你的技术,那么这不就是在砸罐子吗?一个行业里面你不去砸罐子,其他人就会砸罐子, 你不如先砸,还能听个响声。)

这些职责概述提供了每个职位的核心工作内容和要求,希望对您有所帮助。

这也是技术在进行进步的一个标志(开源竞争)

计算机里面有一种”舔狗“思维(”唯结果论“)

只要最后的结果是好的,只要最后我的女神是我的,就是对的,就是最好的,不是的,一个优秀的架构师,重视过程。

开源竞争(开源带来的创新价值是不可以进行质疑的) 

开源竞争(当你无法完全掌握一个技术的时候,就开源这个技术,培养出更多的技术依赖,让更多的人完善你的技术,那么这不就是在砸罐子吗?一个行业里面你不去砸罐子,其他人就会砸罐子,你不如先砸罐子,你还能听个响声。)

随着人工智能推理能力的解答,我越来越感觉自己无助感觉:

因为我既然会无助,我无法掌握无助,那我自己就开源这种无助吧!培养更多的无助依赖,让更多人了解这种物质的原因,那么这不就是在破罐子破摔吗?一个行业里面你不去砸罐子,其他人就会砸罐子,你不如先砸,还能听个响声。

你会说,这不就是软件工程里面所开始具有的内容吗?

不一样了,软件(软件是服务于人,哲学/心理学者如果能够掌握编程能力,那就最为炸裂的存在,一个个神话故事,心理技巧带来的软件优化。)

会变成一个劳动密集型产业!

另一个关键内容能源问题,因为我自己玩人工智能,玩智能设备,太费电了!

我手机每天的耗电量在5个手机左右(因为小米充电宝是20000毫安)

12000毫安的电等于多少度呢?

要将毫安时(mAh)转换为度(千瓦时,kWh),我们需要知道电池的电压。假设电池电压为3.7伏(这是许多充电电池的标准电压),我们可以使用以下公式进行转换:

\[ \text{能量(千瓦时)} = \frac{\text{容量(毫安时)} \times \text{电压(伏特)}}{1000000} \]

给定:
- 容量 = 12000 mAh
- 电压 = 3.7 V

代入公式:

\[ \text{能量} = \frac{12000 \times 3.7}{1000000} \]

现在,我们进行计算:

\[ \text{能量} = \frac{44400}{1000000} = 0.0444 \text{ kWh} \]

所以,12000毫安的电等于0.0444度。
 

就目前来说,可能还需要我自己的将数据上传的互联网,但是另外一个东西,会让人工智能的成长变得更加可怕:

具身智能(自动完成数据收集(完成数据收集),说到这,我其实还是有一点小担忧,但是我已经无所谓了!我更换了自己的研究方向:饮食/养生/塑形/学历提升/清洁,5个层级关系,照顾好自己的身体,说不定在我们这个时代是最接近那个理想时代的呢?下一次科技革命将会是生命科学,下一次研究的核心在中医,如果喜欢的人,可以尝试研究一下中医。)

根据最新的搜索结果,以下是具身智能在2024年的一些最新突破:

1. **PaLM-E模型**:这是一个具身多模态语言模型,它通过将真实世界的连续传感器模态直接融入语言模型中,实现了单词和感知之间的联系。PaLM-E可以处理来自不同观察模态的各种具身推理任务,并在多个实现上表现出良好的效果。最大的PaLM-E-562B模型拥有562亿个参数,除了在机器人任务上进行训练外,还是一个视觉语言通才,并在OK-VQA任务上取得了最先进的性能。

2. **VoxPoser模型**:该模型利用语言模型实现机器人操作的可组合3D价值图,通过理解任务语言描述并进行任务步骤分解,推动了具身智能的发展。

3. **NaviLLM模型**:这是一个为导航任务中语言描述、视觉观察对象以及运动轨迹等不同阶段的任务、对象位置等行动信息提供支持的模型。

4. **人形机器人的发展**:2024年,人形机器人集中爆发,其他形态的本体如协作机械臂、移动操作机器人、仿生灵巧手、无人驾驶出租车等也显现出智能升级趋势。例如,OpenAI 与人形机器人初创公司 Figure 合作推出了 Figure 01 机器人,能听、会说、能与人类对话交流并且可以执行多样化任务。

5. **具身智能技术突破**:具身智能技术的发展从前期模块化的AI算法集成,逐渐转向大模型驱动的统一技术框架,在通用性和泛化性上取得明显突破。早期实现通过集成多个“小模型”结合人工介入方式,根据场景或用途按需调用模型,来完成相应任务。

6. **医疗康养领域的应用**:具身智能技术已被应用于自动化手术机器人,这些机器人能够执行精确的切割和缝合操作,极大地提高了手术的安全性和效率。达芬奇手术系统是此类技术的典型代表。

这些突破展示了具身智能在多个领域的快速发展和应用潜力。

星辰大模型·软件工厂是由中国电信人工智能科技有限公司和中国电信人工智能研究院(TeleAI)共同发布的一款创新工具,旨在革新传统软件开发模式。以下是该软件工厂的主要特点和功能:

1. **全自动流水线**:

利用最新的多模态大模型技术,星辰大模型·软件工厂能够自动生成前后端代码,并进行自主测试和纠错,形成软件开发的全自动流水线。用户只需简单撰写产品文档,大模型即可根据文档内容生成代码,并在软件工厂内一键部署上线。

2. **代码基元概念**:

软件工厂提出了代码基元的概念,从海量代码中抽取最小方法单元,实现代码模块间的关系解耦,有效改善大模型生成代码的可维护性。同时,面向标准库构建调用规范知识,实现了代码的可控生成,提高了开发效率。

3. **大模型编程交互新模式**:

星辰大模型·软件工厂设计了大模型编程交互新模式,用户无需直接与大模型沟通,只需要关心产品需求与描述文档撰写,跟随软件工厂的步骤指引即可完成软件开发、测试与部署,真正做到所写即所得。

4. **项目级别的协作与管理能力**:

软件工厂提供了项目级别的协作与管理能力,为软件开发提供一站式全流程服务,协助推动项目快速开发迭代。

5. **提升开发效率**:

内部测试显示,这款工具将软件开发速度提升了四倍,适用于企业级应用的快速开发和部署。

6. **低门槛、端到端开发**:

星辰大模型·软件工厂允许用户通过提供需求文档,在短短两分钟内完成从需求到应用的开发,整个流程无需编写代码或与大模型对话。

7. **视觉化界面**:

通过视觉化界面,用户能实时监督和修改开发过程,极大提升开发效率。

8. **覆盖全行业应用场景**:

中国电信已经完成了超500TB文本数据、12亿张图文数据、PB级视频数据的积累,联合头部生态构建了涵盖教育、政务、应急等20多个行业大模型,覆盖全行业500多个应用场景。

星辰大模型·软件工厂的推出,标志着软件开发迈入了智能化全流程的新阶段,为企业级应用的快速开发和部署带来了革命性的变化。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值