MLP模型原理(python代码实现)

本文介绍了多层感知机的基本概念,通过解读Python代码实现,重点解析了线性层的构造和前向、反向传播过程。代码示例展示了如何使用`Linear`类构建一个多层神经网络,并使用sigmoid和ReLU作为激活函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:

目前仅提供原理的python代码实现,并未实例进行。如果有需要可以评论亦或者是查阅其他博客的实现过程

在本文的代码原理实现中,使用了Linear层进行搭建

MLP介绍:

 MLP简称多层感知机,其结构与我的一篇博客BP神经网络(python实现)-CSDN博客相似,其实也可以讲大部分的神经网络结构相似,就比如多层感知机(MLP)、全连接神经网络(FCNN)、前馈神经网络(FNN)、深度神经网络(DNN)这些网络其实侧重点不同,但在大体结构上并未过多的差别,在此篇博客中有详细讲解:多层感知机(MLP)、全连接神经网络(FCNN)、前馈神经网络(FNN)、深度神经网络(DNN)与BP算法详解_mlp神经网络-CSDN博客

回到我们的正题,了解多层感知机之前,我们可以先了解一下单层感知机结构:

而在此基础上添加多层神经元,这样就是实现了多层感知机

python实现:

在此处的实现来源于此篇博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值