描述
给定一个n*n的矩阵(3 <= n <= 100,元素的值都是非负整数)。通过(n-1)次实施下述过程,可把这个矩阵转换成一个1*1的矩阵。每次的过程如下:
首先对矩阵进行行归零:即对每一行上的所有元素,都在其原来值的基础上减去该行上的最小值,保证相减后的值仍然是非负整数,且这一行上至少有一个元素的值为0。
接着对矩阵进行列归零:即对每一列上的所有元素,都在其原来值的基础上减去该列上的最小值,保证相减后的值仍然是非负整数,且这一列上至少有一个元素的值为0。
然后对矩阵进行消减:即把n*n矩阵的第二行和第二列删除,使之转换为一个(n-1)*(n-1)的矩阵。
下一次过程,对生成的(n-1)*(n-1)矩阵实施上述过程。显然,经过(n-1)次上述过程, n*n的矩阵会被转换为一个1*1的矩阵。
请求出每次消减前位于第二行第二列的元素的值。
输入
第一行是一个整数n。
接下来n行,每行有n个正整数,描述了整个矩阵。相邻两个整数间用单个空格分隔。
输出
输出为n行,每行上的整数为对应矩阵归零消减过程中,每次消减前位于第二行第二列的元素的值。
样例输入
3
1 2 3
2 3 4
3 4 5
样例输出
3
0
0
#include<stdio.h>
int main()
{
int n,i,j,k,min; // 定义变量n、i、j、k、min
int a[101][101]; // 定义二维数组a,大小为101x101
scanf("%d",&n); // 输入矩阵的大小n
for(i=0;i<n;i++){ // 遍历矩阵的行
for(j=0;j<n;j++){ // 遍历矩阵的列
scanf("%d",&a[i][j]); // 输入矩阵的元素
}
}
for(k=1;k<n;k++){ // 进行n-1次操作
printf("%d\n",a[k][k]); // 输出当前对角线上的元素
for(i=0;i<n;i++){ // 遍历矩阵的行
while(a[i][0]<0){ // 如果当前行的第一个元素小于0,跳过该行
i++;
}
if(i>=n){ // 如果已经遍历完所有行,跳出循环
break;
}
min=a[i][0]; // 初始化最小值为当前行的第一个元素
for(j=1;j<n;j++){ // 遍历当前行的剩余元素
if(a[i][j]<min&&a[i][j]>=0){ // 如果当前元素小于最小值且大于等于0,更新最小值
min=a[i][j];
}
}
for(j=0;j<n;j++){ // 将当前行的所有元素减去最小值
a[i][j]-=min;
}
}
for(j=0;j<n;j++){ // 遍历矩阵的列,与上述过程类似
while(a[0][j]<0){
j++;
}
if(j>=n){
break;
}
min=a[0][j];
for(i=1;i<n;i++){
if(a[i][j]<min&&a[i][j]>=0){
min=a[i][j];
}
}
for(i=0;i<n;i++){
a[i][j]-=min;
}
}
if(k!=n-1){ // 如果当前对角线不是最后一行,将其赋为负数
for(j=0;j<n;j++){
a[k][j]=-1;
}
for(i=0;i<n;i++){
a[i][k]=-1;
}
}
}
printf("%d",a[k-1][k-1]); // 输出最后对角线上的元素
return 0;
}
#include<bits/stdc++.h>
using namespace std;
#define N 100
int main()
{
int i, j, k = 0, min, m, n, a[N + 1][N + 1];
scanf("%d", &n);
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
scanf("%d", &a[i][j]);
for (k = n; k > 0; k--)
{
printf("%d\n", a[1][1]);
for (i = 0; i < k; i++)//归零
{
for (min = a[i][0], j = 1; j < k; j++)
if (a[i][j] < min)
min = a[i][j];
if (min == 0)
continue;
for (j = 0; j < k; j++)
a[i][j] -= min;
}
for (j = 0; j < k; j++)
{
for (min = a[0][j], i = 1; i < k; i++)
if (a[i][j] < min)
min = a[i][j];
if (min == 0)
continue;
for (i = 0; i < k; i++)
a[i][j] -= min;
}
for (i = 0; i < k; i++)//列数消减
{
if (i == 1)
continue;
for (j = 1; j < k - 1; j++)
{
a[i][j] = a[i][j + 1];
}
}
for (i = 1; i < k - 1; i++)//行数消减
for (j = 0; j < k - 1; j++)
a[i][j] = a[i + 1][j];
}
return 0;
}