#include <bits/stdc++.h>
using namespace std;
const int N=32;
const int M=15;
int dp[N][1<<M];
//dp[i][j]表示前i行已经处理好,且第i行状态为j(j以二进制的形式处理)所能带走的最大宠物数
//对于状态j,二进制位为1表示该位放了宠物,为0表示该位没有放宠物
int rows[N];//存储每一行的状态(化为二进制)
bool valid[1<<M];//valid[i]表示i是否是合法状态(二进制位是否有相邻的1),无则为true
int cnt_1(int x)//求x的二进制中有几个1
{
int cnt=0;
while(x)
{
if(x&1)cnt++;
x=x>>1;
}
return cnt;
}
int main()
{
int n,m;
cin>>n>>m;
int upper_limit=(1<<m)-1;//每行的状态的上限:11...111(m个1)
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int tmp;
cin>>tmp;
if(tmp)rows[i]|=1<<(j-1);//将输入的每一行转化为二进制数
//如输入 0 1 0 1,则rows[i]=10
}
}
for(int i=0;i<=upper_limit;i++)//预处理valid数组,验证每一种状态(00...000~11...111)是否合法
{
if((i&(i>>1))==0)valid[i]=true;//没有相邻的1
else valid[i]=false;//有相邻的1
}
for(int i=1;i<=n;i++)//枚举每一行i
{
for(int j=0;j<=upper_limit;j++)//枚举该行的每一种状态j
{
//valid[j]==true表示状态j本身是一种合法的状态
//rows[i]&j==0表示第i行的状态可以是j,即放宠物的位置没有占用食物的位置,
//若row[i]的某一位为1,已经放了食物,那么j的对应位必为0,即一定不能放宠物
if((rows[i]&j)==0&&valid[j])
{
for(int k=0;k<=upper_limit;k++)//枚举前i-1行所有可能的状态k
{
//valid[k]==true,表示k本身是一个合法的状态
//j&k==0,表示前一行与当前行的任意一列都不会出现两个宠物
//两个条件均满足,说明从k状态可以转移到j
if((j&k)==0&&valid[k])
{
//累加第i-1行状态为k的所有方案再加上状态j中"1"的个数(第i行可以放宠物的位置)
//取其中的最大值更新dp[i][j]
dp[i][j]=max(dp[i][j],dp[i-1][k]+cnt_1(j));
}
}
}
}
}
int ans=0;
for(int i=0;i<=upper_limit;i++)//枚举第i行所有可能的状态00...000~11...111
{
ans=max(ans,dp[n][i]);//比较得出最大值
}
cout<<ans<<endl;
return 0;
}
/*
int upper_limit=(1<<m)-1;//每行的状态的上限:11...111(m个1)第28行代码为什么要减1
因为1左移m位是1后面加m个0,超出了枚举范围,再减1变成m个1,这个数才是上界
*/
小明的宠物袋 状态压缩dp
最新推荐文章于 2024-11-07 09:40:18 发布