dfs:
思路:选择任一点进行深度优先遍历,用一个st数组记录一个点是否被遍历过,遍历完之后,检查st数组,是否还有没有遍历过的点,如果有,则不连通,反之连通;
算法证明:dfs必然能够遍历完相互连通的图,如果遍历一遍之后仍然有点没有被遍历,说明有点不连通
#include <bits/stdc++.h>
using namespace std;
const int N = 10010;
vector<int> g[N];
int n,m;
bool st[N];
void dfs(int u)
{
st[u] = 1;
for(int i = 0 ; i < g[u].size() ; i++)
{
int j = g[u][i];
if(!st[j])
{
dfs(j);
}
}
}
signed main()
{
while(cin>>n>>m)
{
memset(st,false,sizeof st);
for(int i = 1 ; i <= n ; i++)
{
g[i].clear();
}
while(m--)
{
int a,b;
cin>>a>>b;
g[a].push_back(b);
g[b].push_back(a);
}
dfs(1);
bool flag = true;
for(int i = 1 ; i <= n ; i++)
{
if(!st[i])
{
flag = false;
break;
}
}
if(flag)
{
cout<<"YES"<<endl;
}
else cout<<"NO"<<endl;
}
return 0;
}
并查集:
依次判断每个结点的父节点是否相同
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1010;
int p[N];
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
int n, m;
while(cin >> n >> m)
{
for(int i = 1;i <= n;i ++)
p[i] = i;
while (m -- )
{
int a, b;
cin >> a >> b;
int fa = find(a), fb = find(b);
if(fa != fb)
p[fa] = fb;
}
int flag = 0;
int res = p[find(1)];
for(int i = 2;i <= n;i ++)
if(p[find(i)] != res)
{
flag = 1;
break;
}
cout << (flag == 1 ? "NO":"YES") << endl;
}
return 0;
}