3587. 连通图 dfs 并查集

dfs:

思路:选择任一点进行深度优先遍历,用一个st数组记录一个点是否被遍历过,遍历完之后,检查st数组,是否还有没有遍历过的点,如果有,则不连通,反之连通;
算法证明:dfs必然能够遍历完相互连通的图,如果遍历一遍之后仍然有点没有被遍历,说明有点不连通

#include <bits/stdc++.h>
using namespace std;

const int N = 10010;
vector<int> g[N];
int n,m;
bool st[N];

void dfs(int u)
{
    st[u] = 1;
    for(int i = 0 ; i < g[u].size() ; i++)
    {
        int j = g[u][i];
        if(!st[j])
        {
            dfs(j);
        }
    }
}

signed main()
{
    while(cin>>n>>m)
    {
        memset(st,false,sizeof st);
        for(int i = 1 ; i <= n ; i++)
        {
            g[i].clear();
        }
        while(m--)
        {
            int a,b;
            cin>>a>>b;
            g[a].push_back(b);
            g[b].push_back(a);
        }
        dfs(1);
        bool flag = true;
        for(int i = 1 ; i <= n ; i++)
        {
            if(!st[i])
            {
                flag = false;
                break;
            }
        }
        if(flag)
        {
            cout<<"YES"<<endl;
        }
        else cout<<"NO"<<endl;
    }
    return 0;
}

并查集:

依次判断每个结点的父节点是否相同

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 1010;

int p[N];

int find(int x)
{
    if (p[x] != x)  p[x] = find(p[x]);
    return p[x];
}

int main()
{
    int n, m;
    while(cin >> n >> m)
    {
        for(int i = 1;i <= n;i ++)
            p[i] = i;
        while (m -- )
        {
            int a, b;
            cin >> a >> b;
            int fa = find(a), fb = find(b);
            if(fa != fb)
                p[fa] = fb;
        }
        int flag = 0;
        int res = p[find(1)];
        for(int i = 2;i <= n;i ++)
            if(p[find(i)] != res)
            {
                flag = 1;
                break;
            }
        cout << (flag == 1 ? "NO":"YES") << endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值