[补题]F.Expected Median

F.Expected Median

在这里插入图片描述

思路:
数组只含有01,选取的子序列中1比0多时,中位数才为1,对答案有贡献
有贡献的子序列中选择的0的个数区间为 [ 0 , k / 2 ] [0,k/2] [0,k/2]
枚举选择0的个数,分别求出可能的方案数并相加

C ( n , m ) = ( n ! m ! ( n − m ) ! ) m o d    p C(n, m) = \left( \frac{n!}{m!(n-m)!} \right) \mod p C(n,m)=(m!(nm)!n!)modp
在模运算下,组合数的计算需要用到模逆元,因为不能直接除以一个数(在模运算中通常没有定义)
可用扩展欧几里得算法来计算逆元,时间复杂度为O(ln n) (逆元的几种求法)

代码:

#include <bits/stdc++.h>
#define endl '\n'
#define int long long
using namespace std;
typedef long long LL;
const int N = 2e5 + 10, mod = 1e9 + 7;

// 快速幂算法计算 (base^exp) % mod
int qpow(int a, int b, int p) {
	int ans = 1;
	while (b > 0) {
		if (b % 2 == 1) ans = (long long)ans * a % p;
		a = (long long)a * a % p;
		b /= 2;
	}
	return ans;
}

// 预计算阶乘和阶乘逆元
int P1[N], P2[N];
inline void init(int tot) {
	P1[0] = 1;
	for (int i = 1; i <= tot; i++) P1[i] = (LL)P1[i - 1] * i % mod;
	P2[tot] = qpow(P1[tot], mod - 2, mod);
	for (int i = tot - 1; i >= 0; i--) P2[i] = (LL)P2[i + 1] * (i + 1) % mod;
}

// 计算组合数 C(n, m) % mod
int comb(int a, int b) {
	if (a < b) return 0;
	return (LL)P1[a] * P2[b] % mod * P2[a - b] % mod;
}

void solve() {
	int n, k;
	cin >> n >> k;
	int mx = k / 2;
	int cnt[2] = {0, 0};
	for (int i = 0; i < n; i++) {
		int x;
		cin >> x;
		cnt[x]++;
	}
	int ans = 0;
	for (int i = 0; i <= mx; i++) {  // 枚举0的个数
		ans += comb(cnt[0], i) * comb(cnt[1], k - i);
		ans %= mod;
	}
	cout << ans << endl;
}

signed main() {
	cin.tie(0)->ios::sync_with_stdio(0);
	init(N - 1); // 初始化阶乘和阶乘逆元
	int T = 1;
	cin >> T;
	while (T--) {
		solve();
	}

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值