最大池化的使用

引言:

在神经网络中,池化层是比较重要的,是提取信息的重要操作,可以去掉一些不重要的信息,从而减少计算量;

相关参数(MaxPool2d):

  • kernel_size:表示做最大池化的窗口大小,可以是单个值,也可以是tuple元组;
  • stride:步长,可以是单个值,也可以是tuple元组;
  • padding:填充,可以是单个值,也可以是tuple元组;
  • dilation:控制窗口中元素的步幅;
  • return_indicex:布尔类型,返回最大值位置索引;
  • ceil_mode:布尔类型,为True,用向上取整的方法,计算出输出形状;默认是向下取整;

代码展示:

import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10('data', train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())

dataloader = DataLoader(dataset, batch_size=64)

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]], dtype=torch.float32)

input = torch.reshape(input, (-1, 1, 5, 5))


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=False)

    def forward(self, input):
        output = self.maxpool1(input)
        return output


tudui = Tudui()

writer = SummaryWriter('logs_maxpool')

step = 0

for data in dataloader:
    imgs, targets = data

    writer.add_images('input', imgs, step)
    output = tudui(imgs)
    # output = torch.reshape(output, (-1, 3, 30, 30))
    writer.add_images('output', output, step)

    step += 1

writer.close()

image.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值