笔记-配置PyTorch(CUDA 12.2)


前言


一、安装 PyTorch(CUDA 12.2)

1. 创建并激活 Conda 环境

如果还没有创建环境,可以先创建:

conda create -n my_geometric_env python=3.8 -y
conda activate my_geometric_env

2. 安装 PyTorch(CUDA 12.2)

目前,PyTorch 官方还没有发布对 CUDA 12.2 的支持,因此你可以使用 CPU 版本的
PyTorch,或者如果你的硬件兼容,可以考虑降级到 CUDA 11.8 并安装与之兼容的 PyTorch 版本。

pip install torch torchvision torchaudio -i https://mirrors.aliyun.com/pypi/simple/

设置 Aliyun 镜像 为了让 pip 从 Aliyun 源安装库,在安装命令中指定 -i https://mirrors.aliyun.com/pypi/simple/。 安装 torch_geometric 及依赖项

3. 安装 torch_geometric 及依赖项

使用 torch_geometric 官方提供的临时源命令,结合 Aliyun 镜像:

Unix/Linux Shell:

pip install torch-scatter -i https://mirrors.aliyun.com/pypi/simple/ -f https://data.pyg.org/whl/torch-$(python -c "import torch; print(torch.__version__.split('+')[0])").html
pip install torch-sparse -i https://mirrors.aliyun.com/pypi/simple/ -f https://data.pyg.org/whl/torch-$(python -c "import torch; print(torch.__version__.split('+')[0])").html
pip install torch-cluster -i https://mirrors.aliyun.com/pypi/simple/ -f https://data.pyg.org/whl/torch-$(python -c "import torch; print(torch.__version__.split('+')[0])").html
pip install torch-spline-conv -i https://mirrors.aliyun.com/pypi/simple/ -f https://data.pyg.org/whl/torch-$(python -c "import torch; print(torch.__version__.split('+')[0])").html

pip install torch-geometric -i https://mirrors.aliyun.com/pypi/simple/

Windows:

pip install torch-scatter -i https://mirrors.aliyun.com/pypi/simple/ -f https://data.pyg.org/whl/torch-1.13.1+cu118.html
pip install torch-sparse -i https://mirrors.aliyun.com/pypi/simple/ -f https://data.pyg.org/whl/torch-1.13.1+cu118.html
pip install torch-cluster -i https://mirrors.aliyun.com/pypi/simple/ -f https://data.pyg.org/whl/torch-1.13.1+cu118.html
pip install torch-spline-conv -i https://mirrors.aliyun.com/pypi/simple/ -f https://data.pyg.org/whl/torch-1.13.1+cu118.html

pip install torch-geometric -i https://mirrors.aliyun.com/pypi/simple/

4. 验证安装

python -c "import torch_geometric; print(torch_geometric.__version__)"

总结

### 安装支持CUDA 12.2PyTorch 为了在Linux系统上安装与CUDA 12.2兼容的PyTorch版本,需遵循特定步骤来确保软件栈的一致性和稳定性。 #### 确认操作系统类型 确认当前使用的Linux发行版对于后续操作至关重要。可以通过命令`lsb_release -a`检查Ubuntu系统的具体版本;如果该工具未预先安装,在Ubuntu中可通过检测文件`/etc/lsb-release`的存在来进行判断[^2]。而对于CentOS或Red Hat系列,则可以查阅`/etc/redhat-release`文件获取版本详情。 #### 更新和准备环境 更新现有包列表至最新状态,并安装必要的依赖项以保障顺利安装过程: ```bash sudo apt-get update && sudo apt-get upgrade -y ``` 针对不同Linux发行版可能需要调整上述命令中的包管理器指令(如yum适用于CentOS)。 #### 安装NVIDIA驱动程序 通过执行如下命令查询显卡型号及其对应的推荐驱动版本: ```bash lspci | grep VGA ubuntu-drivers devices ``` 按照提示完成对应版本NVIDIA驱动的安装,这是使硬件能够被识别和支持的前提条件之一[^4]。 #### 获取适用的PyTorch版本 鉴于目标为使用CUDA 12.2的支持情况,应选择一个既定于官方文档中标明可配合此版本CUDA工作的PyTorch版本。截至最近的信息显示,某些较新的PyTorch版本已经提供了对CUDA 12.x的支持,但具体的子版本号可能会有所变化。因此建议访问官方网站或GitHub页面查找最新的发布说明以确定最恰当的选择[^1]。 考虑到提供的信息提到PyTorch 1.12.1是一个稳定选项,然而其配套的是较低版本的CUDA (即11.3),故而这里假设存在更高版本能满足需求的情况下,应该寻找不低于这个标准且明确声明过适配CUDA 12.2的新版PyTorch进行部署[^3]。 #### 使用Conda创建虚拟环境并安装PyTorch 采用Anaconda作为Python环境管理者可以帮助简化跨平台开发流程以及解决潜在的库冲突问题。下面给出了一组基于conda的安装脚本供参考: ```bash # 创建一个新的conda环境名为pytorch_env conda create --name pytorch_env python=3.9 -y # 激活新建立的环境 conda activate pytorch_env # 添加额外渠道以便更好地找到所需资源 conda config --add channels conda-forge # 执行实际的PyTorch及相关组件安装动作 conda install pytorch torchvision torchaudio cudatoolkit=12.2 -c pytorch-nightly -y ``` 请注意这里的`-c pytorch-nightly`参数指向了包含预览性质构建物的通道,这意味着所获得的可能是尚未正式发布的候选版本。对于生产环境中应用而言,应当优先考虑从稳定源处获取经过充分测试后的成品。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值