向量组及其线性组合
向量组相关的定义
秩:独立向量的个数
向量组的线性表示
线性表示的定义
向量组a1,a2…an" (n≥2)线性相关的充要条件是向量组中至少有一个向量可由其余的n-1个向量线性表示出。(用线性相关和线性无关的概念理解)
通过向量组与方程组来理解线性表示
向量组等价
使用增广矩阵——判断向量组b是否能被向量组a线性表示
线性表示的相关公式
向量组的线性相关性
向量组内部成员的关系要么线性相关,要么线性无关。
线性相关的定义理解:存在不全为0的数k1,……km,使k1a1+k2a2+……kmam=0,意味着向量组的向量有机会被向量组其他向量表示。
线性无关的定义解释:只有存在k1=k2……=km=0的情况,才能使k1a1+k2a2+……kmam=0,意味着向量组的每个向量都没有机会被其他向量表示,每个向量都是独立的。
含有零和成比例的向量组必然线性相关
线性相关/无关与秩的关系
线性相关与无关的推论
例题
极大线性无关组
向量组的极大线性无关组一般不唯一(但极大线性无关组的成员是唯一的,且成员数量=秩),只由一个零向量组成的向量组不存在极大线性无关组,一个线性无关向量组的极大线性无关组就是该向量组本身.
如何求极大线性无关组
从上述可以看出,初等行变换不改变线性关系,所以也不改变秩。
例题
方程组解的结构
基础解系的求法
基础解系的定义
对于一个齐次线性方程组 Ax=0,其解空间是一个向量空间。
基础解系是这个解空间的一个基,也就是说,基础解系是由该解空间中线性无关的向量组成的集合。
例题
基础解系与秩的关系
方程组解的结构
例题