向量组的线性相关性

 向量组及其线性组合 

向量组相关的定义

秩:独立向量的个数

向量组的线性表示 

线性表示的定义  

        向量组a1,a2…an" (n≥2)线性相关的充要条件是向量组中至少有一个向量可由其余的n-1个向量线性表示出。(用线性相关和线性无关的概念理解)

通过向量组与方程组来理解线性表示 

向量组等价 

使用增广矩阵——判断向量组b是否能被向量组a线性表示

 

 

线性表示的相关公式 

向量组的线性相关性 

        向量组内部成员的关系要么线性相关,要么线性无关。


        线性相关的定义理解:存在不全为0的数k1,……km,使k1a1+k2a2+……kmam=0,意味着向量组的向量有机会被向量组其他向量表示


        线性无关的定义解释:只有存在k1=k2……=km=0的情况,才能使k1a1+k2a2+……kmam=0,意味着向量组的每个向量都没有机会被其他向量表示,每个向量都是独立的。

含有零和成比例的向量组必然线性相关 

 

线性相关/无关与秩的关系

 

线性相关与无关的推论 

 例题  

极大线性无关组 

        向量组的极大线性无关组一般不唯一(但极大线性无关组的成员是唯一的,且成员数量=秩),只由一个零向量组成的向量组不存在极大线性无关组,一个线性无关向量组的极大线性无关组就是该向量组本身.
 

如何求极大线性无关组 

        从上述可以看出,初等行变换不改变线性关系,所以也不改变秩。

 例题  

方程组解的结构

 

基础解系的求法

基础解系的定义

        对于一个齐次线性方程组 Ax=0,其解空间是一个向量空间。

        基础解系是这个解空间的一个基,也就是说,基础解系是由该解空间中线性无关的向量组成的集合。

 例题   

基础解系与秩的关系 

方程组解的结构 

 例题    

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值