一阶微分方程
可分离变量的方程
齐次方程
线性方程
可降阶的方程(四种)
第一类的含义:
不显含x,又不显含y的:
高阶线性微分方程 (具体说明)
定理一
高阶齐次方程的通解是对应阶数个线性无关的特解
定理二
非齐次的通解=齐次通解+非齐次的特解
定理三
非齐次方程的两个特解之差=齐次方程的特解
定理四
非齐次方程的特解对于非齐次项具有叠加性
常系数齐次线性微分方程 (具体说明)
常系数齐次线性微分方程需要化作特征方程后求实根,实根有三类
三种实根的证明方式https://blog.csdn.net/2303_80204192/article/details/137346008#t17
常系数齐次高阶求通解
常系数齐次线性微分方程也可以做三阶以上的,关键是将所求的不同根化作对应的通解,再加起来。
常系数非齐次线性微分方程
f(x)为常系数非齐次线性微分方程右侧部分的非齐次项
第一类特解:多项式×e的指数
待定系数法设特解形式
λ(e的指数)与k(x的指数)的关系
第二类特解:(三角函数×多项式)× e的指数
1.Qm(x)的假设
2.λ(e的指数)与k(x的指数)的关系