微分方程(基础篇)

一阶微分方程

可分离变量的方程 

齐次方程 

线性方程 

具体是否要加绝对值的论证

可降阶的方程(四种) 

第一类的含义:


不显含x,又不显含y的:

高阶线性微分方程 (具体说明

定理一 

高阶齐次方程的通解是对应阶数个线性无关的特解

定理二 

非齐次的通解=齐次通解+非齐次的特解

定理三

非齐次方程的两个特解之差=齐次方程的特解

定理四 

非齐次方程的特解对于非齐次项具有叠加性

常系数齐次线性微分方程 (具体说明

        常系数齐次线性微分方程需要化作特征方程后求实根,实根有三类

三种实根的证明方式icon-default.png?t=O83Ahttps://blog.csdn.net/2303_80204192/article/details/137346008#t17

常系数齐次高阶求通解 

        常系数齐次线性微分方程也可以做三阶以上的,关键是将所求的不同根化作对应的通解,再加起来。

常系数非齐次线性微分方程

         f(x)为常系数非齐次线性微分方程右侧部分的非齐次项

第一类特解:多项式×e的指数 

 待定系数法设特解形式


λ(e的指数)与k(x的指数)的关系

第二类特解:(三角函数×多项式)× e的指数  

补充说明: 

 1.Qm(x)的假设


2.λ(e的指数)与k(x的指数)的关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值