时空数据挖掘新思路!25篇顶会论文汇总,含2024最新!

本文汇总了ICLR 2024、AAAI 2024、NeurIPS 2023及KDD 2023等会议的25篇关于时空数据挖掘的最新论文,涵盖了因果建模、图神经网络、交通预测、空气质量建模等多个热点话题。这些研究展示了如何利用深度学习和强化学习技术,以及物理引导的模型,提高时空数据的理解和预测能力。
摘要由CSDN通过智能技术生成

在科技飞速发展的今天,我们正处在一个大数据无处不在的时代,在这个时代背景下,时空数据变得尤为重要,它不仅记录了事物的位置和时间变化,还揭示了地理实体间的复杂联系和动态模式。


为了充分挖掘这些数据的潜在价值,时空数据挖掘技术随之兴起,这里就汇总了25篇时空数据挖掘领域顶会论文,涵盖了多个热门研究方向,一起看看这个领域最新研究成果吧!

ICLR 2024

1、NuwaDynamics: Discovering and Updating in Causal Spatio-Temporal Modeling

NuwaDynamics:因果时空建模中的发现和更新

简述:本文提出了一种因果概念,称为NuwaDynamics,用于识别数据中的因果关系并为模型注入因果推理能力。通过自我监督和干预,在上游发现阶段注入广义信息,然后将数据传递到下游任务以帮助模型识别更广泛的潜在分布和培养因果感知能力。实验证明,集成了NuwaDynamics概念的模型在不同任务上取得了显著成果,比如极端天气和长时间步长超分辨率预测。

2、Causality-Inspired Spatial-Temporal Explanations for Dynamic Graph Neural Networks

动态图神经网络的因果启发的时空解释

简述:本文提出了一种基于结构因果模型(SCM)的创新因果启发生成模型,通过识别琐碎、静态和动态的因果关系来揭示DyGNN预测的原理。该方法解开复杂的因果关系,将DyGNN的时空解释与SCM架构结合,并采用对比学习模块区分琐碎和因果关系,动态相关模块区分动态和静态因果关系。研究人员还开发了基于动态VGAE的框架,用于生成因果和动态掩码,并通过因果发现识别时间范围内的动态关系。实验结果表明,这种方法在理解和解释DyGNNs的时空行为方面取得了显著改进。

3、A Generative Pre-Training Framework for Spatio-Temporal Graph Transfer Learning

用于时空图迁移学习的生成式预训练框架

简述:本文提出了一个创新的生成式预训练框架GPDiff,用于解决智慧城市应用中时空图学习受数据稀缺限制的问题。与传统方法依赖共同特征提取或复杂迁移学习设计不同,这种方法利用生成式超网络对模型参数进行预训练,以适应不同的数据分布和城市特定特征。通过采用基于变压器的去噪网络,该框架在交通速度预测和人群流量预测等任务上优于最先进的基线。

4、GeoLLM: Extracting Geospatial Knowledge from Large Language Models

GeoLLM:从大型语言模型中提取地理空间知识

简述:本文探讨了利用大型语言模型(LLM)中的地理空间知识进行预测的可能性,并提出了一种新方法GeoLLM,该方法结合了OpenStreetMap的地图数据,从LLM中提取空间信息,用于衡量人口密度和经济活动等地理空间任务。实验结果显示,GeoLLM在国际社会核心利益的多项任务中表现优于使用地理坐标或提示信息的基线方法,其性能与LLM模型大小正相关。GeoLLM在减少依赖昂贵或低效的卫星图像等传统协变量的同时,提供了一种高效、全球适用且鲁棒的方法来增强地理空间预测。

5、TESTAM: A Time-Enhanced Spatio-Temporal Attention Model with Mixture of Experts

TESTAM:一种由专家混合而成的时间增强的时空注意力模型

简述:为了解决交通预测中的挑战,本文提出了一种名为TESTAM的深度学习模型。该模型通过混合专家模型,分别对重复和非重复的流量模式进行建模,包括时间建模、静态图的时空建模和动态时空依赖建模三个方面。通过引入不同的专家并正确路由它们,TESTAM可以更好地模拟各种情况,并解决网络的复杂依赖性和

The class `NeuralNet` is a simple fully-connected deep neural network implemented using the `nn.Module` class from the PyTorch library. This class serves as a base for creating custom neural network architectures in PyTorch. It allows you to define the structure and behavior of the neural network by specifying the layers and operations within the `forward` method. To create a custom neural network using this class, you would typically define the layers and operations in the `__init__` method and implement the forward pass in the `forward` method. Here's an example of how you can define a simple fully-connected deep neural network using the `NeuralNet` class: ```python import torch import torch.nn as nn class NeuralNet(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNet, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, num_classes) def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) return out ``` In this example, the neural network has two fully connected layers (`fc1` and `fc2`) with a ReLU activation function applied after the first layer. The `input_size` parameter specifies the size of the input features, `hidden_size` specifies the number of hidden units in the first fully connected layer, and `num_classes` specifies the number of output classes. You can then create an instance of this neural network and use it for tasks such as classification or regression by passing input data through the forward method.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值