提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
样本在深度学习中扮演着至关重要的角色。深度学习是一种基于大数据和复杂神经网络的技术,其核心在于通过大量样本的学习来提取数据中的特征、规律和模式,从而实现对新数据的预测、分类或生成。那么没有数据储备的单位如何进行深度学习模型训练呢?小编给大家汇总了一些开源数据的网址,包含10类建筑提取遥感数据集、4类道路提取遥感数据集、11类地表覆盖分类公开数据集、31类变化监测遥感数据集,更多数据有待持续更新。大家可结合FeatureStation_AI进行深度学习模型训练。
一、建筑物提取公开数据集汇集
1. Massachusetts建筑物数据集
该数据集由151组航拍图像和相应的单通道标签图像组成,这些数据集中所有图像的大小为1500×1500,分辨率为1 米。每幅影像覆盖2.25平方公里的区域,整个数据集大约覆盖340平方公里。
https://www.cs.toronto.edu/~vmnih/data/
2. SpaceNet Challenge数据集
该数据集中里约热内卢及亚特兰大采用的是DigitalGlobe的WorldView-2卫星上采集的30厘米图像,而维加斯、巴黎、上海、喀土穆则采用的是WorldView-3卫星上采集的30厘米图像。
https://spacenetchallenge.github.io/
3. 航空影像目标识别数据集
除了建筑物轮廓,这个数据集还包含了道路矢量。这个数据集适用于训练计算机视觉和机器学习算法,用于遥感影像目标识别和分割,特别是建筑物检测、道路提取及建筑物高度估计。
https://figshare.com/collections/Aerial_imagery_object_identification_dataset_for_building_and_road_detection_and_building_height_estimation/3290519
4. Inria数据集
包含覆盖面积810平方公里,空间分辨率为0.3m的航空正射彩色图像及影像对应的二值化建筑物轮廓。Inria数据集的训练集与测试集还分别包括了不同区域的影像,相同区域不同成像时间的影像。
https://project.inria.fr/aerialimagelabeling/
5. USSOCOM 城市三维挑战数据集
其中包括RGB影像,三维数字表面模型和三维数字高程模型,这些模型是由商业卫星图像生成的,覆盖了360多公里的区域,包含约157000个建筑物矢量。所有图像产品均以50厘米作为地面采样距离。
https://www.topcoder.com/urban3d
6. DeepGlobe Challenge建筑物数据集
数据集包括四个地区:拉斯维加斯、巴黎、上海和喀土穆。标记的数据集由240586幅200米×200米(对应650×650像素)的非重叠影像,及3020701栋建筑物轮廓组成。影像来自WorldView-3传感器,具有31cm单波段全色影像及8波段1.24米多光谱图像。
http://deepglobe.org/index.html
7. CrowdAI Mapping Challenge数据集
提供了RGB图像的卫星图像的各个分幅的数据集,以及它们对图像所在位置的相应建筑物轮廓。训练集是一套包含280741幅卫星图像(300x300像素RGB图像),以及它们在MS-COCO格式中的相应注释的数据集。测试集是一套包含60317幅卫星图像(300x300像素RGB图像)的数据集,以及MS-COCO格式的相应注释。
https://www.crowdai.org/challenges/mapping-challenge
8. WHU建筑物数据集
由航空数据集和卫星数据集组成。
http://study.rsgis.whu.edu.cn/pages/download/
9. AIRS 数据集
航空图像屋顶分割数据集,其目的是从非常高分辨率的航空图像中分割屋顶算法的基准。
https://www.airs-ataset.com/
10. Open AI 坦桑尼亚建筑物数据集
Open AI 坦桑尼亚建筑物数据集以GeoTIFF文件和GeoJSON文件的形式提供,GeoJSON文件包含建筑物轮廓。geojson文件中的“condition”属性描述建筑的类别,属性中的任何其他字段都可以忽略。
https://www.airs-dataset.com/
二、道路提取公开数据集汇集
1. Massachusetts数据集
这些数据集中的所有图像大小为1500×1500,分辨率为1m。
道路数据集包括训练部分的1108幅,测试部分的49幅,验证部分的14幅。
https://www.cs.toronto.edu/~vmnih/data/
2.SpaceNet数据集
这些数据是横跨SpaceNet感兴趣的四个区域的超过8000公里的道路。
https://spacenetchallenge.github.io/
3. DeepGlobe数据集
在灾区,特别是在发展中国家,地图和可获得性信息对应对危机至关重要。提出了挑战,自动提取道路和街道网络从卫星图像。
http://deepglobe.org/index.html https://competitions.codalab.org/competitions/18467
4. SpaceNet5数据集
这个挑战的任务是输出一个详细的图结构,其中边对应于道路,节点对应于交叉点和端点,并估计所有检测到的边的路线行进时间。可以在他们的博客DownLinQ上找到CosmiQ Works算法基线的详细描述。
https://spacenet.ai/sn5-challenge/
三、地表覆盖分类公开数据集汇集
1. DeepGlobe Land cover Classification challenge
DeepGlobe Land Cover Classification Challenge是一个公共数据集,提供高分辨率亚米卫星图像,重点是农村地区。由于土地覆盖类型的多样性和注释的高密度,该数据集很具挑战性。该数据集共包含10146幅卫星图像,大小为20448×20448像素,分为训练/验证/测试集,每组图像为803/171/172幅(对应70%/15%/15%)。
http://deepglobe.org/index.htmlhttps://competitions.codalab.org/competitions/18468
2. Aeroscapes
空中语义分割数据集包括使用商业无人机从5到50 m高度范围内捕获的图像。该数据集为11个类提供了3269幅图像和地表真实标签。
https://github.com/ishann/aeroscapes
3. SEN12MS
SEN12MS是由180748张相应的3种类型遥感数据组成的一个数据集,包括了Sentinel-1双极化SAR数据,Sentinel-2多光谱图像和MODIS土地覆盖图。其中Sentinel-1图像分辨率为20 m,Sentinel-2多光谱图像分辨率为10 m,波段数为13,MODIS的土地覆盖的图像分辨率为500 m。
https://mediatum.ub.tum.de/1474000
4. Zurich Summer Dataset
该数据是从2002年8月从QuickBird收购瑞士苏黎世市获得的。QuickBird图像由4个通道(NIR-RGB)组成,分别是 锐化至GSD约0.62 cm的PAN分辨率。我们手动注释了8种不同的城市和城市郊区类别:道路,建筑物,树木,草木,裸露的土壤,水,铁路和游泳池。类样本的累积数量高度不平衡,以反映现实情况。请注意,注释不是完美的,也不是超密集的(并非对每个像素都进行注释),并且可能还会出现一些错误。我们通过联合选择超像素(SLIC)和绘制(徒手绘制)区域来进行注释,我们可以放心地分配对象类。
https://sites.google.com/site/michelevolpiresearch/data/zurich-dataset
5. DLRSD
DLRSD是一个密集的标签数据集,可用于多标签任务,如遥感图像检索(RSIR)和分类,以及其他基于像素的任务,如语义分割(在遥感中也称为分类)。DLRSD共有21个大类,每个类100个图像,与UC Merced存档相同。我们在UC Merced档案库中使用以下17类标签标记了每个图像的像素,即飞机,裸土,建筑物,汽车,丛林法院,码头,田野,草地,活动房屋,人行道,沙子,大海,船,坦克,树木和水。首先在多标签RSIR存档中构造和定义这17个类别标签,其中UC Merced存档中的每个图像都提供了一组多个标签。
https://sites.google.com/view/zhouwx/dataset#h.p_hQS2jYeaFpV0
6. Gaofen Image Dataset(GID)
用于土地利用和土地覆盖(LULC)分类的大型数据集。它包含来自中国60多个不同城市的150幅高质量高分二号(GF-2)图像,这些图像覆盖的地理区域超过了5万km²。GID图像具有较高的类内多样性和较低的类间可分离性。
http://captain.whu.edu.cn/GID/ https://x-ytong.github.io/project/GID.html
7. WHDLD
WHDLD是一个密集的标签数据集,可用于多标签任务,例如遥感图像检索(RSIR)和分类,以及其他基于像素的任务,例如语义分割(在遥感中也称为分类)。我们使用以下6个类别标签标记每个图像的像素,即建筑物,道路,人行道,植被,裸露的土壤和水。
https://sites.google.com/view/zhouwx/dataset#h.p_hQS2jYeaFpV0
8. ISPRS
该数据集采用了由高分辨率正交照片和相应的密集图像匹配技术产生的数字地表模型(DSM)。这两个数据集区域都涵盖了城市场景。每个数据集已手动分类为6个最常见的土地覆盖类别,分别为不透水面、建筑物、低矮植被、树木、汽车和背景。背景类包括水体和与其他已定义类别不同的物体(例如容器、网球场、游泳池),这些物体通常属于城市场景中的不感兴趣的语义对象。
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
9. IEEE GRSS Data Fusion Contest(2017)
美国地质调查局提供的的地面卫星数据:包含可见光、短波和长波红外在内的8个多光谱波段,并以100 m分辨率重采样的;
哨兵2图像:该图像空间分辨率为100 m,拥有9个多光谱波段即可见光、近红外和短红外波长(包含修改的哥白尼数据2016);辅助数据:开放街道图(OSM)层,具有土地利用信息:建筑、自然、道路和其他土地利用区域。其中还为建筑和土地使用区域提供分辨率为20 m的OSM层的栅格地图,可与卫星图像叠加。此外,对于选取的城市,还提供了城市几个地区的各种LCZ类的地面真实标签。标签为100 m分辨率的栅格图像,也可叠加到卫星图像上.
10.IEEE GRSS Data Fusion Contest(2018)
数据是由NCALM于2017年2月16日在16:31至18:18 GMT之间从国家机载激光测绘中心获得的。多光谱激光雷达点云数据波段在1550 nm,1064 nm和532 nm。高光谱数据覆盖范围为380—1050 nm,共有48个波段,空间分辨率为1 m。高分辨率RGB遥感图像的空间分辨率为5 cm,被分割成几个单独的图片。
http://www.grss-ieee.org/community/technical-committees/data-fusion/2018-ieee-grss-data-fusion-contest/
11.EvLab-SS Dataset
EvLab-SS数据集用于评估真实工程场景上的语义分割算法,数据集来源于中国地理条件调查和绘图项目,每幅图像都有地理条件调查的完整注释。数据集的平均大小约为4500×4500像素。EvLab-SS数据集包含11个大类,分别是背景、农田、花园、林地、草地、建筑、道路、构筑物、挖孔桩、沙漠和水域,目前包括由不同平台和传感器拍摄的60幅图像。该数据集包括35幅卫星图像,其中19幅由World-View-2卫星采集,5幅由GeoEye卫星采集,5幅由Quick Bird卫星采集,6幅由GF-2卫星采集。该数据集还有25幅航空图像,其中10幅图像的空间分辨率为0.25 m,15幅图像的空间分辨率为0.1 m。
http://earthvisionlab.whu.edu.cn/zm/SemanticSegmentation/index.html
四、变化监测公开数据集汇集
1. S2MTCP
该数据集包含1520个Sentinel-2 1C级图像对,这些图像对来源于世界各地的城市地区。空间分辨率小于10 m的波段将重新采样到10 m,并且图像将被裁剪为大约600x600像素。
https://zenodo.org/record/4280482#.YCzfITOLTax
2. Hi-UCD
Hi-UCD专注于城市变化,并使用超高分辨率图像构建多时态语义变化以实现精细的变化检测。Hi-UCD的研究区域是爱沙尼亚首都塔林的一部分,面积30平方公里。2017-2018年有359对图像,2018-2019年有386对,2017-2019年有548对,包括图像,语义图和不同时间的更改图。每个图像的大小为1024 x 1024,空间分辨率为0.1 m。有9种物体,包括自然物体(水,草地,林地,光秃秃的土地),人造物体(建筑物,温室,道路,桥梁)和其他(与变化有关)的物体,基本上包括爱沙尼亚的所有类型的城市土地覆盖 。
https://arxiv.org/abs/2011.03247
3. SECOND
SECOND是一个语义变化检测数据集,它从多个平台和传感器收集了4662对航空图像。这些图像对分布在杭州,成都和上海等城市。每个图像的尺寸为512 x 512,并在像素级别进行注释。包括6种主要土地覆盖类别,即非植被地表,树木,低植被,水,建筑物和游乐场,它们经常涉及自然和人为的地理变化。
http://www.captain-whu.com/PROJECT/SCD/
4. LEVIR-CD
LEVIR-CD包含637个超高分辨率(VHR,0.5m /像素)的Google Earth图像补丁对,大小为1024×1024像素。这些时间跨度为5到14年的比特影像具有重大的土地利用变化,尤其是建筑的增长。LEVIR-CD涵盖各种类型的建筑物,例如别墅,高层公寓,小型车库和大型仓库。完整注释的LEVIR-CD总共包含31,333个单独的变更构建实例。
https://justchenhao.github.io/LEVIR/
5. LEVIR-CD+
LEVIR-CD+数据集是大规模建筑变化检测数据集,是在现有公开数据集LEVIR-CD的基础上构建的。LEVIR-CD+一共包含1970个样本,其中985个样本作为训练,后985个样本用于测试。每个样本包含前时向遥感图像,后时相遥感图像以及对应的建筑变化标签图。本数据集中的遥感图像大小为1024 X 1024,分辨率为0.5米。标签图与图像大小相等,像素值为0或255,其中0代表没有建筑变化,255代表存在建筑变化。本数据集中变化的建筑实例数量大致为80000个。
http://rs.ia.ac.cn/cp/portal/dataDetail?name=LEVIR-CD%2B
6. SLADCD
Side Looking, All Daytime Change Detection (SLADCD) 数据集是大规模的建筑变化检测数据集。图像分辨率为0.5~1米。包含2万个样本,发布其中1万个训练和验证集样本(当前发布767对样本),保留1万个样本用于在线测评。每个样本包含前时向遥感图像,后时相遥感图像以及对应的建筑变化标签图。大小为1024 X 1024,配对切片中成像时间间隔为1年以上,前后时相已进行精细化配准,并制作了对应的标签图像。标签图与图像等大,标签图像中为人工精细标注的前后时相中新建或拆除的建筑物轮廓。像素值为0或255,其中0代表没有建筑变化,255代表存在建筑变化。公开数据集中共包含超过8万个有变化的建筑实例,可用于变化检测深度学习方法的开发和验证。
http://rs.ia.ac.cn/cp/portal/dataDetail?name=SLADCD
7. DSIFN-CD
数据集是从 Google 地球手动收集的。它由六幅大型双时相高分辨率图像组成,覆盖中国六个城市(即北京、成都、深圳、重庆、武汉、西安)。五个大图像对(即北京、成都、深圳、重庆、武汉)被裁剪成 394 个子图像对,大小为 512×512。数据增强后,获得了 3940 个双时图像对的集合。Xian 图像对被裁剪成 48 个图像对用于模型测试。训练数据集中有 3600 个图像对,验证数据集中有 340 个图像对,测试数据集中有 48 个图像对。
https://github.com/GeoZcx/A-deeply-supervised-image-fusion-network-for-change-detection-in-remote-sensing-images/tree/master/dataset
8. OSCD
数据集由24对多光谱图像组成,这些图像于2015年和2018年由Sentinel-2卫星拍摄,包含13个波段,并具有10 m,20 m和60 m 3种空间分辨率。其中的14对图像具有对应的像素级变化标记,可以用来训练和设置变化检测算法的参数。
https://rcdaudt.github.io/oscd/
9. SYSU-CD
SYSU-CD 数据集包含 2007 年至 2014 年期间在香港拍摄的 20000 对尺寸为 256×256 的 0.5 米航空图像,主要变化类型包括:新建城市建筑、郊区扩张、施工前基础植被变化、扩建道路、海洋建筑。
https://github.com/liumency/SYSU-CD
10. HU-CD
数据集涵盖了2011年2月发生6.3级地震并在随后几年重建的地区。该数据集由2012年4月获得的航空图像组成,其中包含20.5平方公里内的12796栋建筑(2016年数据集中同一区域内的建筑为16077栋)。通过人工选取30个地面GCPs,将子数据集以1.6像素的精度校正为航空数据集。
http://gpcv.whu.edu.cn/data/building_dataset.html
11.AICD
包含1000对800x600图像,每对包括一个参考图像和一个测试图像,以及1000对应的800x600地面真相掩码。
https://opendatalab.com/OpenDataLab/AICD
12. CDD
数据集具有三种类型:没有对象相对移动的合成图像,对象相对移动较小的合成图像,随季节变化为真实遥感图像(由Google Earth获得)。 随季节变化的遥感图像具有16000个图像集,图像尺寸为256x256像素(10000个训练集以及3000个测试和验证集)。
https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset
13. ZTAKI Air change benchmark
数据集包含13组图片, 分辨率1.5m, 尺寸952x640, 主要包含以下变化信息:新建区域、建筑施工、种植大批树木、新的耕地、建筑完成前的地面工地。
http://web.eee.sztaki.hu/remotesensing/airchange_benchmark.html
14.HRSCD
该数据集包含来自IGS的BD ORTHO数据库的291个RGB航空图像的注册图像对。提供了像素级更改和土地覆盖注释,这些注释是通过对Urban Atlas 2006,Urban Atlas 2012和Urban Atlas Change 2006-2012地图进行栅格化生成的。
https://ieee-dataport.org/open-access/hrscd-high-resolution-semantic-change-detection-dataset#files
15. Hyperspectral Change Detection Dataset
该数据集可用于在多时间高光谱图像中执行变化检测技术。它包括来自AVIRIS传感器的两个不同的高光谱场景:圣塔芭芭拉场景,拍摄于2013年和2014年,使用AVIRIS传感器在圣塔芭芭拉地区(加利福尼亚州)上拍摄,其空间尺寸为984 x 740像素,包括224个光谱带。湾区场景,拍摄于2013年和2015年,AVIRIS传感器围绕帕特森市(加利福尼亚州)拍摄,其空间尺寸为600 x 500像素,包括224个光谱带。它还包括来自HYPERION传感器的高光谱场景:Hermiston城市场景,使用HYPERION传感器于2004年和2007年在Hermiston City地区(俄勒冈州)上拍摄,其空间尺寸为390 x 200像素,包括242个光谱带。在此场景中,确定了与作物过渡有关的5种变化类型。
https://citius.usc.es/investigacion/datasets/hyperspectral-change-detection-dataset
16. ABCD dataset
ABCD(AIST Building Change Detection)数据集专门用于构建和评估损坏检测系统,以识别建筑物是否已被海啸冲走。该数据集中的每个数据都是一对海啸前后的航拍图像,并包含位于图像中心的目标建筑物。分配给每个贴片对的类别标签(即“冲走”或“幸存”)表示海啸发生前贴片中心的建筑物是否被海啸冲走。图像分为两种:fixed-scale and resized。Fixed-scale patches从航拍图像中裁剪出固定的160 x 160像素的图像;因此它们具有与原始图像相同的分辨率(40厘米)。相反,resized patches 根据每个目标建筑的大小进行裁剪(具体来说,是目标建筑的三倍大),然后全部调整为128 x 128像素。
https://github.com/gistairc/ABCDdataset
17. The Urban Atlas
Urban Atlas数据集提供了主要欧盟城市范围内可对比的土地利用和土地覆盖数据,包含5份数据:(1) 2006年319个地区的城市功能区数据“Urban Atlas 2006”; (2) 2012年785个地区的城市功能区数据“Urban Atlas 2012”; (3) “Change 2006-2012”; (4) 部分区域的行道树图层“Street Tree Layer (STL)”; (5) 部分城市(欧盟28国和欧洲自由贸易联盟国家首都)的核心城区建筑高度数据“Building Height 2012”;其中,“Urban Atlas 2006”和“Urban Atlas 2012”包含每个地区的城市功能区矢量图层及对应区域PDF格式的高分辨率地图,而变化图层“Change 2006-2012”统计了“Urban Atlas 2006”和“Urban Atlas 2012”中共同包含的区域的城市功能区变化情况。
https://land.copernicus.eu/local/urban-atlas
18. SpaceNet7: Multi-Temporal Urban Development Challenge
多时相城市发展挑战赛的宏伟目标是通过卫星图像追踪精确的建筑地址和城市变化。该数据集由Planet卫星图像镶嵌图组成,其中包括24张图像(每月一张),覆盖约100个独特的地理位置。该数据集将包含超过40,000平方公里的图像和图像中建筑物轮廓的详尽的多边形标签,总计超过1,000万个单独注释。图像由4米分辨率的Planet‘s Dove星座组成的RBGA(红色,绿色,蓝色,alpha)8位。对于每个感兴趣的区域(AOI),数据立方体的有效期大约为两年,所有图像均具有相同的形状。
https://spacenet.ai/sn7-challenge/
19. 商汤AI遥感解译大赛-变化检测
数据集共包含4662组数据,每组数据中的图片边长为512,分为训练集2968组,公榜测试集847组,私榜测试集847组。其中训练集公布所有的图像及对应的标签文件,公榜测试集仅公布图像,私榜测试集不公开。变化类型为6种主要土地性质之间的相互转化:水体、地面、低矮植被、树木、建筑物、运动场。每组数据中,前后时相的两张图片各自对应一张标注图,表示发生变化的区域以及该图片变化区域内各时期的土地性质。
https://rs.sensetime.com/competition/index.html#/data
20. Mts-WH
Multi-temp Scene Wuhan(MtS-WH) 数据集主要用于进行场景变化检测的方法理论研究与验证。场景变化检测就是在场景语义的层次上,对一定范围区域的土地利用属性变化情况进行检测和分析。本数据集主要包括两张由IKONOS传感器获得的,大小为7200 x 6000的大尺寸高分辨率遥感影像。覆盖范围为中国武汉市汉阳区。影像分别获取于2002年2月和2009年6月,经过GS算法融合,分辨率为1m,包含4个波段(蓝,绿,红和近红外波段)。
http://sigma.whu.edu.cn/newspage.php?q=2019_03_26
21. CD_Data_GZ
这些图像是在2006年至2019年期间采集的,覆盖了中国广州市的郊区。为了促进图像对的生成,采用了BIGEMAP软件的Google Earth服务来收集19个随季节变化的VHR图像对,这些图像对具有红色,绿色和蓝色三个波段,空间分辨率为0.55 m,尺寸范围为1006×1168 像素到4936×5224像素。
https://github.com/daifeng2016/Change-Detection-Dataset-for-High-Resolution-Satellite-Imagery
22. SECOND
SECOND是一个语义变化检测数据集,它从多个平台和传感器收集了4662对航空图像。这些图像对分布在杭州,成都和上海等城市。每个图像的尺寸为512 x 512,并在像素级别进行注释。第二个重点是6种主要的土地覆盖类别,即非植被地表,树木,低植被,水,建筑物和游乐场,它们经常涉及自然和人为的地理变化。
http://www.captain-whu.com/PROJECT/SCD/
23. WHU Building Change detection Dataset
数据集包含两个航拍图像(0.2m /像素,15354×32507),并提供了这两个航拍图像的变化矢量,变化栅格图以及两个相应的建筑物矢量。
https://study.rsgis.whu.edu.cn/pages/download/building_dataset.html
24. Synthetic images and read season-varying remote sensing images
该数据集具有三种类型:没有对象相对偏移的合成图像,对象相对偏移较小的合成图像,随季节变化的真实遥感图像(由Google Earth获得)。真实季节变化的遥感图像具有16000个图像集,图像尺寸为256x256像素(10000个训练集以及3000个测试和验证集),空间分辨率为3至100 cm / px
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2/565/2018/isprs-archives-XLII-2-565-2018.pdf
https://drive.google.com/uc?id=1GX656JqqOyBi_Ef0w65kDGVto-nHrNs9&export=download
25. AICD Dataset
该数据集包含合成的航空图像,其中包含使用渲染引擎生成的人工更改。它包含1000对800x600图像,每对包括一个参考图像和一个测试图像,以及1000个对应的800x600地面真值。
https://computervisiononline.com/dataset/1105138664
26. SZTAKI
该数据集包含13对大小为952x640像素的航拍图像,空间分辨率为1.5m。变化内容包含(a)新建城区(b)建筑施工(c)种植大批树木(d)新的耕地(e)重建前的基础工作。请注意,ground truth不包含变化分类,仅为每个像素标注 变化/不变化 标签。
http://web.eee.sztaki.hu/remotesensing/airchange_benchmark.html
27.GETNET
该数据集有两个高光谱图像,分别在2013年5月3日和2013年12月31日在中国江苏省获得。它的尺寸为463×241像素,去除噪声带后可使用198个带。在真实地图中,白色像素代表变化的部分,黑色像素代表不变的部分。
https://ieeexplore.ieee.org/document/8418840/?denied=
28. The River Data Set
该数据集包含两幅高光谱影像,分别于2013年5月3日和12月31日采集自中国江苏省的某河流地区,所用传感器为Earth Observing-1 (EO-1) Hyperion,光谱范围为0.4—2.5 μm,光谱分辨率为10 nm,空间分辨率为30 m,影像大小为463×241像素,共有242个光谱波段,去除噪声后有198个波段可用。影像中的主要变化类型是河道缩减。
https://share.weiyun.com/5xdge4R
29. xView 2 building Damage Asessment Challenge
550,000座建筑足迹和4个破坏规模类别,20个全球位置和7种灾难类型(野火,山体滑坡,大坝倒塌,火山喷发,地震/海啸,风,洪水),Worldview-3图像(0.3百万分辨率)
https://xview2.org/
30. 遥感图像稀疏表征与智能分析竞赛-变化检测
本项竞赛以光学遥感图像为处理对象,参赛队伍使用主办方提供的遥感图像进行建筑物变化检测,主办方根据评分标准对变化检测结果进行综合评价。竞赛中将提供两个不同时间获取的大尺度高分辨率遥感图像(包含蓝、绿、红和近红外四个波段),以及图像中变化区域的二值化标注数据集。
百度云:
https://pan.baidu.com/s/1GZa_CxzWOcPOS54PM_FM2Q
提取码:RSAI
31. 广东政务数据创新大赛
本次大赛覆盖广东省部分地区数百平方公里的土地,其数据共3个大文件,存储在OSS上,供所有参赛选手下载挖掘。卫星数据以Tiff图像文件格式储存。quickbird2015.tif是一张2015年的卫星图片,quickbird2017.tif是一张2017年的卫星图片。每个Tiff文件中有4个波段的数据:蓝、绿、红、近红外。本次比赛的卫星数据为多景数据拼接而成,这是国土资源工作中常见的实际场景。比赛数据在蓝、绿两个波段有明显的拼接痕迹,而红、近红外波段的拼接痕迹不明显。建议选手挑选波段使用数据,或者在算法中设计应对方案。每个像元以16-bit存储。
https://tianchi.aliyun.com/competition/entrance/231615/introduction
总结
以上就是今天介绍的数据啦,想要进行深度模型训练的朋友们,可以关注微信公众号“FeatureStation”,免费试用,训练出自己的深度学习模型。