引言
在人工智能和大语言模型(LLM)快速发展的今天,如何构建高效、灵活的智能Agent成为了一个热门话题。LangGraph作为一个强大的工具,为我们提供了一种新的方式来实现复杂的AI工作流,特别是在构建ReACT(Reasoning and Acting)架构的智能Agent方面表现出色。本文将深入探讨如何使用LangGraph来实现ReACT架构,并提供详细的代码示例和解释。
LangGraph的基本概念
LangGraph是一个用于构建基于LLM的应用程序的Python框架。它的核心理念是将复杂的AI工作流程表示为一个状态图,其中包含节点、边和数据状态。这种方法使得我们可以更直观地设计和实现智能Agent的行为逻辑。
在LangGraph中,我们可以使用基础组件(节点、边、数据状态)来构建Agent,这也是LangGraph自由度高的一个重要优点。同时,LangGraph还提供了一些预构建的代理,如ReACT智能体和工具调用智能体,使得我们可以更快速地创建智能Agent。
ReACT架构简介
ReACT(Reasoning and Acting)是一种智能Agent架构,它结合了推理和行动的能力。在ReACT架构中,Agent通过不断地思考(Reasoning)、采取行动(Acting)和观察结果(Observing)来解决问题。这种方法使得Agent能够更灵活地应对复杂的任务,并且可以利用外部工具来增强其能力。
使用LangGraph实现ReACT架构
现在,让我们通过一个具体的例子来看看如何使用LangGraph实现ReACT架构的智能Agent。
1. 环境设置
首先,我们需要导入必要的库和模块:
import dotenv
from langchain\_community.tools import GoogleSerperRun
from langchain\_community.tools.openai\_dalle\_image\_generation import OpenAIDALLEImageGenerationTool
from langchain\_community.utilities import GoogleSerperAPIWrapper
from langchain\_community.utilities.dalle\_image\_generator import DallEAPIWrapper
from langchain\_core.pydantic\_v1 import BaseModel, Field
from langchain\_openai import ChatOpenAI
from langgraph.prebuilt.chat\_agent\_executor import create\_react\_agent
dotenv.load\_dotenv()
2. 定义工具和参数模式
接下来,我们定义了两个工具:Google搜索和DALL-E图像生成。同时,我们也为这些工具定义了参数模式:
class GoogleSerperArgsSchema(BaseModel):
query: str \= Field(description="执行谷歌搜索的查询语句")
class DallEArgsSchema(BaseModel):
query: str \= Field(description="输入应该是生成图像的文本提示(prompt)")
google\_serper \= GoogleSerperRun(
name\="google\_serper",
description\=(
"一个低成本的谷歌搜索API。"
"当你需要回答有关时事的问题时,可以调用该工具。"
"该工具的输入是搜索查询语句。"
),
args\_schema\=GoogleSerperArgsSchema,
api\_wrapper\=GoogleSerperAPIWrapper(),
)
dalle \= OpenAIDALLEImageGenerationTool(
name\="openai\_dalle",
api\_wrapper\=DallEAPIWrapper(model="dall-e-3"),
args\_schema\=DallEArgsSchema,
)
tools \= \[google\_serper, dalle\]
3. 创建语言模型
我们使用OpenAI的GPT-4模型作为我们的大语言模型:
model = ChatOpenAI(model="gpt-4o-mini", temperature=0)
4. 使用预构建函数创建ReACT智能体
LangGraph提供了预构建的函数来创建ReACT智能体,使用起来非常简单:
agent = create\_react\_agent(
model\=model,
tools\=tools
)
5. 调用智能体并输出内容
最后,我们可以调用我们创建的智能体,并打印输出结果:
print(agent.invoke({"messages": \[("human", "帮我绘制一幅鲨鱼在天上飞的图片")\]}))
运行结果分析
当我们运行这段代码时,智能体会首先理解任务需求,然后决定使用DALL-E工具来生成图像。它会生成一个详细的图像描述,然后调用DALL-E API来创建图像。最后,它会返回生成的图像URL,并提供一个简短的描述。
输出内容可能如下所示:
{'messages': \[HumanMessage(content='帮我绘制一幅鲨鱼在天上飞的图片'),
AIMessage(content\='', additional\_kwargs={'tool\_calls': \[...\]}),
ToolMessage(content\='https://dalleproduse.blob.core.windows.net/...'),
AIMessage(content\='这是您请求的画面:一只鲨鱼在天上飞翔的图片。您可以点击下面的链接查看这幅图。\\n\\n!\[鲨鱼在天上飞\](https://dalleproduse.blob.core.windows.net/...)')\]
}
总结
通过这个例子,我们可以看到LangGraph如何简化了ReACT架构智能Agent的构建过程。它提供了高级抽象和预构建组件,使得我们可以快速实现复杂的AI工作流。同时,LangGraph的灵活性也允许我们根据需要自定义和扩展Agent的功能。
需要注意的是,LangGraph仍在快速发展中。例如,当前版本(截至文章撰写时)的预构建ReACT智能体是基于函数调用实现的,并且在0.3.0版本中可能会被移除。因此,在使用LangGraph时,建议关注其最新的文档和更新。
尽管如此,LangGraph的核心设计理念和封装思路仍然非常值得学习和借鉴。随着AI技术的不断进步,我们可以期待LangGraph在未来会提供更多强大和易用的功能,进一步简化智能Agent的开发过程。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓