前言
人工智能技术领域持续火热,智能助手已经成为企业和个人提高效率、获取信息的重要工具。构建一个私有化智能助手,不仅可以满足个性化需求,还可以确保数据安全和隐私保护!
智能助手已经成为我们日常生活和工作中不可或缺的一部分。本文将详细介绍如何基于 Dify、大模型(LLM)和智能体(Agent)从零开始构建一个功能强大、易于扩展、私有化智能助手,帮助读者了解整个构建过程和涉及的关键技术。
安装部署 Dify
Dify 是一个开源助手 API 和 GPT 的替代品。Dify.AI 是一个大型语言模型(LLM)应用开发平台。它整合了后端即服务(Backend as a Service)和 LLMOps 的概念,涵盖了构建生成性 AI 原生应用所需的核心技术栈,包括内置的 RAG 引擎。这样一个开源的机器学习框架,提供丰富的算法和工具,对开发者进行模型训练和应用开发是极其方便的。
这里,我们在 Windows 操作系统上进行 Docker 虚拟化零代码安装:
docker compose up -d
检查,查看各个容器是否都正常运行:
docker compose ps
下载&安装 对应版本,根据操作系统任选其一即可。
搭建 私有化知识库
输入本机地址,进入控制台:
http://localhost
首次,第一次初始化,需要设置管理员邮箱账户以及密码:
接下来,使用刚才输入的账户+密码,登录系统:
进入之后,我们可以看到菜单栏目:
这里我们以译点准备的架构圈手册,为数据源:
下一步,点击保存并处理,待平台响应 100%:
这样我们就能看到,译点架构圈手册已经正常载入。
上述,一个简易的个人知识库搭建完成,输入源就是私有化文件或其他知识内容。
其中,大模型(LLM)的选择性也是有很多,不再赘述->参见:
构建人工智能体 Agent
智能体是一种能够自主决策和行动的软件实体,它可以与环境和用户进行交互,实现任务的自动化处理。在本项目中,我们将使用智能体作为智能助手的核心组件,负责处理用户的请求和生成响应。
构建智能体,输入名称跟描述内容,设置相应功能:
构建智能体有多种方式,直接单独创建 Agent 或 执行工作流:
节点提供了很多内置工具,选择你需要的即可:
智能体(Agent)构建历程
数据准备: 收集并整理大量的语料数据,用于训练 LLM 模型和智能体。
模型训练: 使用 Dify 框架对 LLM 模型进行训练,提高模型在自然语言处理任务上的性能。
智能体开发: 基于 Dify 和训练好的 LLM 模型,开发智能体的核心功能,包括自然语言理解、对话管理、知识推理等。
系统集成: 将训练好的 LLM 模型和智能体集成到私有化智能助手中,实现用户与智能助手的交互。
测试与优化: 对私有化智能助手进行详细的测试,发现并修复潜在的问题。根据测试结果进行优化,提高智能助手的性能和用户体验。
通过上述的介绍,可以了解如何基于 Dify、大模型(LLM)和智能体(Agent)从零开始构建一个私有化智能助手。
人工智能技术持续向前发展,我们可以期待智能助手在未来将拥有更加强大的功能和更加广泛的应用场景。
同时,需要注意到数据安全、隐私保护等问题,确保人工智能技术的发展能够更好地服务于人类社会。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓