随着ChatGPT在国内的爆火,越来越多的厂商开始投入AI大模型中去,几乎所有的网站都内嵌了一个AI对话窗口,电商、娱乐、社区。。。等等,可以看出,AI大模型已经是互联网发展的大趋势,那么,如何为自己的网站或者企业构建一个AI大模型呢?Maxkb就是一个开源免费的训练大模型工具,非常nice。
1、maxkb的介绍
它是飞致云开源免费的一款基于 LLM 大语言模型的开源知识库问答系统,旨在成为企业的最强大脑。
-
开箱即用
支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化、RAG(检索增强生成),智能问答交互体验好; -
无缝嵌入
支持零编码快速嵌入到第三方业务系统,让已有系统快速拥有智能问答能力,提高用户满意度; -
灵活编排
内置强大的工作流引擎,支持编排 AI 工作流程,满足复杂业务场景下的需求; -
模型中立
支持对接各种大语言模型,包括本地私有大模型(Llama 3 / Qwen 2 等)、国内公共大模型(通义千问 / 智谱 AI / 百度千帆 / Kimi / DeepSeek 等)和国外公共大模型(OpenAI / Azure OpenAI / Gemini 等)。
2、maxkb的安装步骤
介绍完maxkb后,废话不多说,直接开搞!
温情提示:本次为了方便我只演示在线安装的方式,如果有小伙伴的环境是内网,无法连接外网的话,可以到maxkb官网社区进行下载tar.gz包,进行离线安装。 详见 MaxKB 文档。
2.1、硬件需求
这里需要跟大家交代一下,maxkb是非常占用内存的,对硬件要求还是有点高的
-
操作系统:Ubuntu 22.04 / CentOS 7 64 位系统;
-
CPU/内存: 推荐 2C/4GB 以上;(亲测启动maxkb后,内存直接占用了1G多,所以内存推荐4G)
-
磁盘空间:100GB;
-
浏览器要求:请使用 Chrome、FireFox、Edge等现代浏览器;
-
可访问互联网。
2.2、搭建Docker环境
首先maxkb是要有docker环境的,如果没有docker的话,需要提前进行下载docker,如果你已经有docker环境了,直接跳过这部分。
直接复制下面命令,进行安装docker
yum install -y yum-utils device-mapper-persistent-data lvm2
yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
yum install docker-ce docker-ce-cli containerd.io -y
systemctl start docker
systemctl enable docker
安装完后,执行docker version命令
如果出现以上情况,证明docker已经安装成功了。
2.3、安装maxkb(使用命令形式)
ok!现在来进行安装maxkb,一行命令搞定!
docker run -d --name=maxkb -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data cr2.fit2cloud.com/1panel/maxkb
输入以上命令,等待安装完成。
2.4、使用1Panel安装(若采用2.3方式安装,则跳过这节)
如果有小伙伴看过我1Panel的那篇文章后,可以通过1Panel面板进行安装,不用再手动去执行安装命令了。
首先先去配置docker的镜像源,可以加速
-
镜像加速:国内访问 Docker Hub 有时会遇到困难,此时可以配置镜像加速器。
-
配置加速地址:
https://docker.1panel.live
Bash
-
另外还推荐使用自己的镜像加速地址:
-
DaoCloud 加速器:https://<你的ID>.m.daocloud.io
-
阿里云加速器:https://<你的ID>.mirror.aliyuncs.com
-
-
配置完毕后一定要重启docker,默认1Panel会自动帮你重启。
2.5、访问MaxKB
输入你的服务器ip加你设置的端口号访问。
http://目标服务器 IP 地址:目标端口
默认登录信息
用户名:admin
默认密码:MaxKB@123..
3、创建AI应用
这里阿龙插一嘴,如果你想自己下载AI模型进行训练的话,前提是要有一个GPU服务器,因为我在2C4G的服务器上用Ollama下载过qwen2:7B的模型,结果回答速度是非常的慢,几乎一秒吐一个字,所以说普通的云服务器跑AI模型是带不动的,必须要有GPU的独显服务器,然而我为何不选择GPU服务器呢,这里给大家科普一下,2C4G普通云服务器一年的价格在150-200不等,而一个2C4G带GPU的服务器1一个月就需要300+的费用,可想而知,GPU服务器只有企业才能用得起,个人的话完全没必要。
因为我用的是百度的千帆大模型,直接调的API,而且目前这个ERNIE-Speed-128k的模型是免费调用的,现在我来教大家怎么去申请API接口的AK/SK。
进入百度智能云官网 百度智能云产品_云计算_数据库_智能大数据_人工智能-百度智能云
进入千帆大模型平台
申请完后,回到MaxKB,创建AI模型,选择百度千帆大模型
创建完毕后,回到应用中,勾选你刚才创建的AI模型,就可以跟AI模型进行谈话聊天啦
4、内嵌项目
这么好用的AI对话,当然要内嵌到项目中装个B啦,那么MaxKB目前支持两种内嵌方式
根据自己需求,copy下面的代码到项目前端页面中
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓