Deepseek这么火!这些使用教程你会了吗?一文解锁 Deepseek大模型使用精髓(基础篇)

大家好!最近 DeepSeek 可是火出了圈,想必好多人都听说过,但可能还有些朋友不太清楚它到底是什么,所以专门针对DeepSeek使用做了这篇保姆级基础教程,先看几组数据了解一下DeepSeek火在哪


百度指数

国外免费APP排行榜

国内免费APP排行榜

2025年1月20日DeepSeek R1发布后,用户增长迅速,在全球160多个国家登顶,日活跃用户数突破1500万,成了全球增速最快的AI应用。还引发了金融市场的震动,一度让美股市值一夜之间蒸发超 1 万亿美金,连英伟达股价单日都下跌了 16%。

能取得这样的成就,背后原因就是他们发布了免费且无比聪明的模型DeepSeek R1。这个模型让 DeepSeek 直接 “杀” 出重围,在 AI 领域站稳脚跟。


DeepSeek 能做什么

DeepSeek,借助先进的人工智能技术,它能在海量信息里,如同开启导航一般,帮你迅速找到关键内容,不管你是做数据分析、管理资料,还是研究市场行情,它都能派上大用场。给出的搜索结果又准又快,还能帮你分析出有用的信息,让你做决定时更有底气。

今天我就带大家好好认识一下这个工具,从最基础的用法开始,一直到熟练运用它的各种功能。


DeepSeek使用教程-界面介绍

  1. 访问官网 https://www.deepseek.com/,支持网页端与移动APP端访问,本文主要针对网页端做使用教程


  1. 在使用时,注意聊天输入框下方的两个选择「深度思考R1」和「联网搜索」

  1. 关于**「深度思考R1」**

如果只是想要简单快速地得到答案,无需开启深度思考,直接使用默认模型 V3,就能迅速响应你的需求。

但要是遇到复杂任务,比如制定商业计划、分析科研难题,期望 AI 给出的内容更有条理、经过深度思考,那就一定要打开「深度思考 R1」选项。这个模型具备强大的逻辑推理能力,能够抽丝剥茧,处理多步骤分析和复杂决策任务。这也是今天这篇文章的重点,我会带大家深入了解它的使用方法和独特优势。

深度思考对应DeepSeek R1模型,DeepSeek 的 R1 模型与我们日常使用的对话类 AI 有着本质区别。

像 OpenAI 的 GPT-4o、DeepSeek V3,还有我豆包,都属于指令模型(instruct model) 。这类模型主要是按照指令生成内容或执行任务。而 DeepSeek R1 属于推理模型(reasoning model) ,它把精力都放在逻辑推理和问题解决上,能够独立处理那些需要多步骤分析、因果推断或者复杂决策的任务。

举个例子,当面对一个复杂的商业策略制定问题时,指令模型可能更多是根据已有模板和指令给出建议,而 DeepSeek R1 则会从市场数据、竞争对手情况等多方面进行推理分析,给出更具针对性和深度的策略方案。


  1. 关于**「联网搜索」**

当你需要查询的知识是 2023 年 12 月之前的内容时,比如历史事件、经典文学作品等,不用打开「联网搜索」功能。因为大模型在训练过程中已经充分学习了这些时间段的语料知识,依靠自身就能给出准确回答。

但当你想要了解 2023 年 12 月及之后的信息,像24年奥运会比赛的最新赛果,或者25年春晚节目名单,就一定要开启「联网搜索」功能。这是由于大模型自身没有涵盖这些最新数据,只有通过联网搜索,才能获取并为你提供完整且准确的答案。


DeepSeek使用教程-基础对话

在日常交流、工作沟通甚至与AI对话中,提问是一门艺术。一个好的问题不仅能节省时间,还能引导出更有价值的答案。今天,我们就来聊聊如何通过五个黄金法则,让你的提问更高效、更精准。


法则一:明确需求 [不要模糊,要具体]
  • ✕ 错误示例:「帮我写个文案」

  • 🍎正确姿势:「我需要一篇关于618大促的电商文案,目标用户是25-35岁的女性,重点突出折扣力度和限时优惠。」

优化建议 :明确你的目标、受众和关键信息,避免让对方猜来猜去。


法则二:提供背景 [信息越全,答案越准]
  • ✕ 错误示例:「这个方案怎么优化?」

  • 🍎正确姿势: 点击回形针上传方案文件后进行提问「这是我们新产品的市场推广方案,目标用户是大学生,预算有限。请帮我优化活动形式,确保成本控制在1万元以内。」

优化建议 :提供足够的背景信息,比如目标、限制条件或相关数据,让对方快速理解你的需求。


法则三:指定格式 [清晰的结构,高效的输出]
  • ✕ 错误示例:「给我一些建议」

  • 🍎正确姿势:「请用分点形式列出三条提升小红书账号粉丝的建议,每条建议不超过50字。」

优化建议 :指定回答的格式(如分点、表格、图表),能让答案更直观、更易用。


法则四:控制长度 [简短不等于简单]
  • ✕ 错误示例:「详细解释一下」

  • 🍎正确姿势:「请用150字以内解释什么是‘私域流量’,并举例说明它的应用场景。」

优化建议 :设定字数或时间限制,既能节省时间,又能锻炼提问者的总结能力。


法则五:及时纠正 [反馈是优化的关键]
  • 当回答不满意时,可以:

  • 「这个方案的方向不太符合我们的品牌调性,请提供更年轻化的设计。」

  • 「这个解释有点复杂,请用更通俗的语言重新描述。」

优化建议 :及时反馈问题,明确调整方向,避免无效沟通。


DeepSeek使用教程-魔法指令

基础指令
1. /续写 :当回答中断时自动继续生成。

示例 :「请写一篇关于气候变化的文章」

若回答中断,输入:「/续写」即可继续生成剩余内容。


2. /简化 :将复杂内容转换成通俗易懂的语言。

示例 : 输入:「请解释量子计算,然后/简化。」

AI会先提供专业解释,再用大白话重新表述。


3. /示例 :要求展示实际案例,特别是在写代码或需要具体示范时。

示例 输入:「请写一个Python函数来计算斐波那契数列,然后/示例。」

AI会提供代码示例并解释其工作原理。


4. /步骤 :让AI分步骤指导操作流程,适合学习或执行复杂任务。

示例 输入:「/步骤 如何用手机拍摄美食照片。」

AI会分步骤指导,如「1. 选择自然光源;2. 调整手机角度;3. 使用美食模式……」


5. /检查:帮你发现文档中的错误,包括语法、逻辑或格式问题。

示例 输入:「请检查以下段落是否有语法错误:『人工智能是未来,它将改变我们的生活。』」

AI会分析并提供修改建议。


场景演练

1. 分步骤指导

输入:「/步骤 如何用手机拍摄美食照片」


2. 简化复杂概念

输入:「请解释量子计算,然后/简化」


3. 代码示例

输入:「请写一个Python函数来计算斐波那契数列,然后/示例」


4. 文档检查

输入:「请检查以下段落是否有语法错误:『人工智能是未来,它将改变我们的生活』」


DeepSeek使用教程-行业效率提升案例

1. 法律文档审查

操作流程:

1.1 上传法律合同或协议。

1.2 输入指令:「提取所有保密条款」或「识别潜在法律风险」。

效率提升: 快速识别关键法律条款和潜在风险,减少律师手动审查时间。

2. 市场调研报告生成

操作流程:

2.1 上传多份市场分析报告。

2.2 输入指令:「总结各报告中的市场趋势」或「对比不同市场的消费者行为」。

效率提升: 自动整合和分析多份报告,生成综合市场调研报告,节省调研时间。

3. 学术论文辅助写作

操作流程:

3.1 上传相关研究文献。

3.2 输入指令:「提取相关研究方法」或「总结各文献的研究结论」。

效率提升: 快速获取相关研究信息,辅助论文写作,提高研究效率。

4. 客户反馈分析

操作流程:

4.1 上传客户反馈文档或调查问卷。

4.2 输入指令:「分析客户满意度」或「提取常见问题和建议」。

效率提升: 自动分析客户反馈,识别常见问题和改进建议,提升客户服务质量。

5. 财务报表分析

操作流程:

5.1 上传公司财务报表。

5.2 输入指令:「计算关键财务比率」或「识别异常财务数据」。

效率提升: 快速计算财务指标和识别异常数据,辅助财务决策。


写在最后

  • 本期教程为大家带来 Deepseek 的基础使用攻略,记得关注公众号,后续会持续更新超实用的实际场景使用案例,绝对不容错过!

  • 宝子们,本期是 Deepseek 基础使用教程!点点关注不迷路,后续超多实际场景应用案例,手把手带你玩转 Deepseek!

  • 想掌握 Deepseek 基础用法?看这里!本期教程带你入门,关注公众号,后续持续更新实际场景使用案例,带你解锁更多实用技巧


如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### PyCharm 打开文件显示全的解决方案 当遇到PyCharm打开文件显示全的情况时,可以尝试以下几种方法来解决问题。 #### 方法一:清理缓存并重启IDE 有时IDE内部缓存可能导致文件加载异常。通过清除缓存再启动程序能够有效改善此状况。具体操作路径为`File -> Invalidate Caches / Restart...`,之后按照提示完成相应动作即可[^1]。 #### 方法二:调整编辑器字体设置 如果是因为字体原因造成的内容显示问题,则可以通过修改编辑区内的文字样式来进行修复。进入`Settings/Preferences | Editor | Font`选项卡内更改合适的字号大小以及启用抗锯齿功能等参数配置[^2]。 #### 方法三:检查项目结构配置 对于某些特定场景下的源码视图缺失现象,可能是由于当前工作空间未能正确识别全部模块所引起。此时应该核查Project Structure的Content Roots设定项是否涵盖了整个工程根目录;必要时可手动添加遗漏部分,并保存变更生效[^3]。 ```python # 示例代码用于展示如何获取当前项目的根路径,在实际应用中可根据需求调用该函数辅助排查问题 import os def get_project_root(): current_file = os.path.abspath(__file__) project_dir = os.path.dirname(current_file) while not os.path.exists(os.path.join(project_dir, '.idea')): parent_dir = os.path.dirname(project_dir) if parent_dir == project_dir: break project_dir = parent_dir return project_dir print(f"Current Project Root Directory is {get_project_root()}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值