如果你关注 AI 领域,最近肯定经常听到 MCP 这个词。这是个啥呢?照本宣科:MCP 是 Model Context Protocol 的缩写,也就是模型上下文协议。
这是 Anthropic 所推动的一项开放标准,为大语言模型(LLMs)应用提供一个标准化的接口,使其能够连接和交互外部数据源和工具。
它是为了克服 LLMs 应用仅依赖其训练数据的局限性,使其能够访问所需的上下文信息,并执行更广泛的任务。
该协议通过定义一套通用的规则和格式,使得 LLMs 应用可以在需要时动态地获取相关信息和执行操作,从而增强其功能和应用范围。
图片来源:https://norahsakal.com/blog/mcp-vs-api-model-context-protocol-explained/
说人话:就是一个让 AI 大模型连接万物,理解和使用外部信息和工具的统一标准。
就好比你的电脑连接外部设备,一般通过 USB 接口这个标准一样。 AI 大模型想连接其它软件、工具,可以使用 MCP 这个标准。
举个例子吧。
比如你有一个很厉害的大模型,比如 ChatGPT,但它只能回答基于自己学过的知识(比如 2023 年之前的酒店和航班信息)。现在你想让它帮你规划下周去巴黎的行程,但它不知道最新的机票价格、酒店空房情况,也无法直接帮你订票。
这时候,可以通过 MCP 这个规范让 AI 大模型接入携程、高德地图等等软件(前提是这个软件支持通过 MCP 规范调用,有 MCP Server),这样它就能查实时数据,拉取最新的酒店价格和空房信息。
调用支付接口订票,最后把结果整理成你能看懂的回答。
3万人 Star!
超火的 MCP Server 列表
在逛 GitHub 的时候,发现了一个超过 3W 人 Star 的开源项目,这是一个 MCP Server 盘点列表,热度还在极速攀升。
开源地址:https://github.com/punkpeye/awesome-mcp-servers
这个开源项目系统整理了 3000+ 可以接入使用的 MCP Server,覆盖浏览器自动化、搜索、金融、游戏、安全、科研等 20+ 垂直领域,包括本地和基于云服务的。我挑几个介绍一下。
① 浏览器自动化
MCP-Playwright 这个 MCP 服务器,通过提供浏览器自动化能力,使 AI 大模型能够在真实浏览器环境中导航网页、执行点击/输入操作、截取屏幕截图以及运行 JavaScript
开源地址:https://github.com/executeautomation/mcp-playwright
② AI 解析内容生成摘要
AI摘要生成MCP服务器,支持多种内容类型:纯文本、网页、PDF文档、EPUB电子书、HTML内容。
开源地址:https://github.com/0xshellming/mcp-summarizer
③ 管理 Notion
notion_mcp 这个 MCP Server, 可以链接 AI 大模型与 Notion 平台,支持自动化页面管理、内容同步、模板生成等等。
开源地址:https://github.com/danhilse/notion_mcp
开源地址:https://github.com/suekou/mcp-notion-server
④ 地图 MCP Server
高德、腾讯、百度地图,三家地图服务商都已经布局MCP Server,为AI大模型与地图服务的结合提供了便捷的接口。这个不在这个开源项目的列表中,是我觉得比较重要,列出来了。
⑤ 搜索 ArXiv 研究论文
arxiv-mcp-server 这个 MCP Server,专为 arXiv 学术论文库设计,允许 AI 模型通过编程接口搜索论文、下载内容并进行深度分析(如摘要提炼、方法评估和结果解读),同时支持本地存储以加速访问
开源地址:https://github.com/blazickjp/arxiv-mcp-server
⑥ 更多
https://mcp.so/
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓