windows环境下基于LLaMA-Factory对Qwen进行lora微调

基于LLaMA-Factory对Qwen进行lora微调

1.实验环境

1.1 系统和硬件
  • windows
  • 3050(4GB显存)
1.2 环境搭建
  • LLaMA-Factory

    git clone https://github.com/hiyouga/LLaMA-Factory.git
    cd LLaMA-Factory
    pip install -e '.[torch,metrics]'
    
  • 卸载CPU版本的torch并更换GPU版本的torch

    pip uninstall torch torchvision torchaudio -y
    pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu121
    
1.3 模型以及数据集下载
  • 模型选择了Qwen2.5-0.5B-instruct

    git clone https://www.modelscope.cn/Qwen/Qwen2.5-0.5B-Instruct.git
    
  • 数据集选择了华东师范大学开源的educhat-sft-002-data-osm

    git clone https://huggingface.co/datasets/ecnu-icalk/educhat-sft-002-data-osm
    

2.数据处理

使用自定义数据集进行微调时,需要将数据集转换成AIpaca格式或者ShareGPT格式,并在data_info.json中注册

  • Educhat-sft的原始格式

  • 需要的数据集格式

    其中 human 和 observation 必须出现在奇数位置,gpt 和 function 必须出现在偶数位置

    [
      {
        "conversations": [
          {
            "from": "human",
            "value": "人类指令"
          },
          {
            "from": "function_call",
            "value": "工具参数"
          },
          {
            "from": "observation",
            "value": "工具结果"
          },
          {
            "from": "gpt",
            "value": "模型回答"
          }
        ],
        "system": "系统提示词(选填)",
        "tools": "工具描述(选填)"
      }
    ]
    
  • 注册

    data_info.json文件中添加

      "数据集名称": {
        "file_name": "路径",
        "formatting": "sharegpt",
        "columns": {
          "messages": "conversations",
          "system": "system"
        }
      }
    

3.模型训练

  • 训练配置文件examples/train_lora/llama3_lora_sft修改

    ### model
    model_name_or_path: ../Qwen2.5-0.5B-Instruct # 模型目录
    trust_remote_code: true
    
    ### method
    stage: sft # 训练阶段
    do_train: true
    finetuning_type: lora
    lora_rank: 8 # lora微调秩的大小,影响显存占用以及训练效果
    lora_target: all
    
    ### dataset
    dataset: identity, res # 数据集名称,使用逗号隔开
    template: qwen # 模板名程
    cutoff_len: 2048
    max_samples: 1000
    overwrite_cache: true
    preprocessing_num_workers: 16
    
    ### output
    output_dir: saves/Qwen-0.5b-identity/lora/sft # 输出
    logging_steps: 10
    save_steps: 500
    plot_loss: true
    overwrite_output_dir: true
    
    ### train
    per_device_train_batch_size: 1
    gradient_accumulation_steps: 8
    learning_rate: 1.0e-4
    num_train_epochs: 3.0
    lr_scheduler_type: cosine
    warmup_ratio: 0.1
    bf16: true
    # resume_from_checkpoint: saves/Qwen-0.5b/lora/sft/checkpoint-2500 # 断点续训目录
    ddp_timeout: 180000000
    
    ### eval
    # eval_dataset: alpaca_en_demo
    # val_size: 0.1
    # per_device_eval_batch_size: 1
    # eval_strategy: steps
    # eval_steps: 500
    
    
  • 使用以下命令开始训练

    llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
    

4.微调模型推理

  • 原始模型直接推理

    修改examples/inference/llama3.yaml

    model_name_or_path: ../Qwen2.5-0.5B-Instruct # 路径
    template: qwen # 模板
    infer_backend: huggingface  # choices: [huggingface, vllm]
    trust_remote_code: true
    

    启动

    llamafactory-cli webchat examples/inference/llama3.yaml
    

    效果如下:

  • 微调模型推理

    使用以下命令启动:

    llamafactory-cli webchat --model_name_or_path ../Qwen2.5-0.5B-Instruct --adapter_name_or_path ./saves/QWen-0.5b-identity/lora/sft  --template qwen --finetuning_type lora
    

    简单微调后,再次询问相似的问题效果如下;

5.模型合并

  • 修改/examples/merge_lora/llama3_lora_sft.yaml配置,将模型路径以及微调得到的权重路径进行修改。

    ### Note: DO NOT use quantized model or quantization_bit when merging lora adapters
    
    ### model
    model_name_or_path: ../Qwen2.5-0.5B-Instruct # 模型路径
    adapter_name_or_path: ./saves/Qwen-0.5b-identity/lora/sft # 微调得到的权重路径
    template: qwen
    trust_remote_code: true
    
    ### export
    export_dir: output/qwen_lora_sft_1 # 输出路径
    export_size: 5
    export_device: auto
    export_legacy_format: false
    
  • 修改完配置文件后,使用下列指令导出合并后的模型

    llamafactory-cli export ./examples/merge_lora/llama3_lora_sft.yaml
    

6.模型评估

  • llama-factory提供了对cmmlummlu,ceval的评测脚本,使用以下命令可以对微调前后的模型进行简单的评测:

    llamafactory-cli eval `
    --model_name_or_path ../Qwen2.5-0.5B-Instruct ` # 模型路径
    --template qwen ` 
    --task cmmlu_test ` # 评测数据集
    --lang zh ` # 语言
    --n_shot 5 `
    --batch_size 1 `
    --trust_remote_code True
    
  • 模型在cmmlu的中文评估结果如下:

    原始模型:

    微调后的模型:

    可能由于参数设置问题,导致微调后的模型相较于原始模型,模型各个方向的能力都出现了一定的下滑。

Lora微调原理

1. 其他微调方法

  • 全量微调

    对于模型中的所有矩阵中的参数,都必须参与更新。

    • 主要优点:最大程度适应特定任务
    • 主要缺点:计算资源消耗量大,显存占用大,训练时间长,资源受限场景下不适合
  • adapter tuning

    针对全量微调计算资源消耗大的缺点,adapter turng在Transformer的基础上增加了一个adapter 模块,在微调时,除了该模块,模型的其他部分都是冻结的

    • 优点:相对于全量微调而言,adapter训练的参数量减小,更加节省资源。
    • 缺点:增加adapter后,模型的层数变深,推理速度和训练速度减慢。
  • prefix tuning

    prefix tuning是在模型的输入部分添加一系列可训练的前缀向量,这些向量会和输入数据一起被送入模型,从而影响模型的行为。

    • 优点:显著减少训练的参数量,并且不会增加推理时间
    • 缺点:
      • 较难训练,且模型的效果并不严格随prefix参数量的增加而上升
      • 会使得输入层有效信息长度减少。增加了prefix之后,留给原始文字数据的空间就少了,因此可能会降低原始文字中prompt的表达能力。

2.Lora微调

  • 整体架构:

    左侧将全参数微调分成两个部分,一个是冻结的权重$W$,另一个是微调产生的权重增量$ \Delta W $,此时有$ h=Wx+ \Delta Wx$,Lora 在该想法的基础上,将 $\Delta W $进一步拆解成两个低秩矩阵$A$, $B$的乘积,即$h = Wx + BAx$。

    在原始预训练矩阵的旁路上,用低秩矩阵A和B来近似替代增量更新 $\Delta W$,训练只更新$A$, $B$矩阵,以此降低显存占用,达到高效微调的目的

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值