兄弟们,还在为每天重复回答客户问题头疼吗?今天带你玩个狠的——用Docker三分钟搭建企业级AI客服!这个叫FastGPT的开源神器,能直接把公司产品文档喂给AI,自动生成标准话术,客户提问秒回精准答案,客服小姐姐都直呼要转行!
一、项目简介
FastGPT(项目地址:https://github.com/labring/FastGPT)是基于大语言模型的智能问答系统。它支持通过Flow可视化编排复杂对话流程,最牛的是能对接本地知识库,让AI回答不再瞎编乱造。实测用公司API文档训练后,回答技术问题准确率高达90%!
二、四大核心优势
-
1. 私有化部署:数据不出内网,安全合规
-
2. 零代码编排:拖拽式设计对话流程图
-
3. 混合云部署:大模型用云端,向量计算用本地
-
4. 多格式支持:PDF/Word/Markdown文档秒解析
三、Dockge极速部署
1. 创建compose.yaml
version: '3.3'
services:
pg:
image: ankane/pgvector:v0.5.0
container_name: fastgpt-pg
volumes:
- ./pdata:/var/lib/postgresql/data
environment:
- POSTGRES_USER=username
- POSTGRES_PASSWORD=password
mongo:
image: mongo:5.0.18
container_name: fastgpt-mongo
volumes:
- ./mdata:/data/db
environment:
- MONGO_INITDB_ROOT_USERNAME=myusername
- MONGO_INITDB_ROOT_PASSWORD=mypassword
command: mongod --keyFile /data/mongodb.key --replSet rs0
fastgpt:
image: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt:v4.7
ports:
- 3155:3000
volumes:
- ./config.json:/app/data/config.json
- ./tmp:/app/tmp
environment:
- DEFAULT_ROOT_PSW=1234
- OPENAI_BASE_URL=http://你的API地址:端口/v1
- CHAT_API_KEY=你的API密钥
- MONGODB_URI=mongodb://myusername:mypassword@mongo:27017/fastgpt?authSource=admin
- PG_URL=postgresql://username:password@pg:5432/postgres
2. 部署步骤
打开Dockge面板 -> 创建堆栈 -> 设置堆栈名称 -> 粘贴compose代码 -> 30秒启动成功!
下载配置文件:config.json模板(https://raw.githubusercontent.com/wbsu2003/synology/main/FastGPT/config.json)
修改config.json中的向量模型配置(推荐使用M3E)
启动服务,访问http://服务器IP:3155 使用root/1234登录
四、实战演示
1. 创建技术文档知识库
上传产品说明书PDF,系统自动解析技术参数。实测200页文档10分钟完成索引,比手动整理快20倍!
2. 配置智能问答流程
设置三层应答策略:
-
1. 优先匹配知识库标准答案
-
2. 未命中时调用大模型生成
-
3. 敏感问题自动转人工
3. API对接实战
import requests
url = "http://fastgptIP:3155/api/v1/chat/completions"
headers = {"Authorization": "Bearer your_api_key"}
payload = {
"model": "你的应用ID",
"messages": [{"content": "产品支持哪些支付方式?"}]
}
response = requests.post(url, json=payload, headers=headers)
print(response.json()["choices"][0]["message"]["content"])
五、避坑指南
-
1. 资源预警:4核8G服务器最多支撑20并发
-
2. 文档预处理:技术文档需删除页眉页脚
-
3. 答案校准:重要回答需设置人工复核节点
-
4. 监控设置:建议对接Prometheus监控API调用
总结
经过一周实测,FastGPT在技术问答场景下完全可替代初级客服,但硬件门槛较高(建议16G内存起步)。推荐中大型企业自建知识库,个人开发者可用阿里云函数版。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓