DeepSeek作为一个集成多种先进技术的平台,利用协同过滤和深度学习技术在多个领域实现了创新应用。以下是一些具体的场景和示例,展示了这些技术如何被应用于实际问题中。
一、推荐系统
电子商务
协同过滤:在电商平台中,协同过滤用于根据用户的历史行为(如购买记录、浏览历史等)推荐相关商品。基于用户的相似性或项目的相似性来生成个性化推荐。
Python
深色版本
from surprise import Dataset, Reader, SVD
from surprise.model_selection import cross_validate
# 加载数据集
data = Dataset.load_builtin('ml-100k')
# 使用SVD进行矩阵分解
algo = SVD()
cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
深度学习:结合深度神经网络(DNN),可以捕捉更复杂的用户偏好模式。例如,使用嵌入层将用户ID和商品ID映射到低维空间,并通过多层感知器(MLP)进行预测。
Python
深色版本
import tensorflow as tf
from tensorflow.keras.layers import Embedding, Flatten, Dense, Concatenate
from tensorflow.keras.models import Model
def create_model(n_users, n_items, embedding_dim):
user_input = tf.keras.Input(shape=(1,), name='user_input')
item_input = tf.keras.Input(shape=(1,), name='item_input')