正则化的概念

正则化(Regularization):是机器学习中用于减少泛化误差(测试误差),从而缓解过度拟合的设计策略。当使用正则化策略减少泛化误差时,可能会增大训练误差。

针对线性回归模型,假设对其代价函数里加入正则化项,其中L1和L2正则化项的表示分别如下所示,其中λ >= 0,是用来平衡正则化项和经验风险的系数

优点:减少泛化误差,减少过拟合

缺点:增大训练误差

基本名词

L1-norm :(L1范数)

L2-norm:(L2范数)

L1-regularization 和 L2-regularization :正则项

norm:一个向量的 norm 就是将该向量投影到 [0, ∞​) 范围内的值,其中 0 值只有零向量的 norm 取到。将其与现实中距离进行类比,在机器学习中 norm 也就总被拿来表示距离关系:根据范数取值多大,这两个向量距离多远。这里范数的取值就是范数的种类,即Lp-norm:

当p=1时,被称为1-norm,也就是L1-norm,

当p=2时,被称为2-norm,也就是L2-norm。

L1 范数 和 L2 范数在机器学习上最主要的应用大概分下面两类:

(1)作为损失函数使用

(2)作为正则项使用也即所谓 L1-regularization 和 L2-regularization

最小化损失函数,其实就是最小化预测值和目标值的绝对值。

L1-norm损失函数,又称为最小绝对偏差 (least absolute deviation,LAD)。:特征选择

LAD:预测值与真实值之间的绝对值

优点:鲁棒性更强,对异常值更不敏感

正则化方式:减小模型参数,尽管都能简化模型

假定参数符合拉普拉斯分布

模型也被叫作Lasso回归

L2-norm损失函数,又称为最小二乘误差(least squares error, LSE):抗过拟合的能力更好一点

优点:

  • 计算方便,可以直接求导获得取最小值时各个参数的取值。
  • 用L2一定只有一条最好的预测线

正则化方式:产生稀疏解,实际上是减少特征数量。

假定参数符合高斯分布。

模型也被叫作Ridge回归

逻辑回归需要做正则化吗?

逻辑回归模型的输出是经过softmax的概率值,概率值的排序不受归一化的影响。从另一个角度来看,softmax其实也就实现了归一化的目的。
逻辑回归模型的参数优化一般采用了梯度下降法,如果不对特征进行归一化,可能会使得损失函数值得等高线呈椭球形,这样花费更多的迭代步数才能到达最优解。
逻辑回归模型的损失函数可以加入正则项,那么参数的大小便决定了损失函数值,特征就有必要先进行归一化。

在逻辑回归模型中,归一化还是有必要的,尤其是在正则化和梯度下降中所起到的作用。

参考链接:                           
https://blog.csdn.net/w__Y__w/article/details/121792038

【机器学习基础】一文搞懂机器学习里的L1与L2正则化-腾讯云开发者社区-腾讯云

逻辑回归+正则化 - 知乎:python

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值