写作动机
第一篇主要从数学建模的角度总结了近期自学神经网络的成果,但纸上得来终觉浅,不通过代码实现一遍很多东西终究只是空中楼阁。所以本篇总结主要从代码角度回顾总结自学成果。
尽量做到每日一次总结。
行文思路
仿照鱼书的风格,先给出计算图,再一步一步根据计算图搭建代码。
使用框架
因为笔者是一名医学生,所以选择现有的框架——pytorch进行代码的实现。
参考书籍
《动手学深度学习2.0》
2024/3/1——简化AlexNet
先前处理的时单通道图像,接下来处理三通道。
与LeNet相比,AlexNet要深得多,且激活函数选择ReLU。
LeNet在处理全连接层时使用了权重衰退,而AlexNet在处理全连接层时使用了暂退法。
确定模型
- 输入数字:三通道图片
- 输出数字:标签
- 数字映射:卷积+全连接
计算图
代码实现
import torch
from torch import nn
from d2l import torch as d2l
simple_AlexNet = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(96, 256, kernel_size=5, padding=2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(256, 384, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Flatten(),
nn.Linear(3*6400, 4096),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096,10))
应用
为了快,依旧选择Fashion-MNIST。
所以还是单通道。
但因为AlexNet处理的图片像素是224224,远大于Fashion-MNIST的2828,所以先把2828扩展为224224。
先确定数据:
batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
再搭建模型:
simple_AlexNet = nn.Sequential(
nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(96, 256, kernel_size=5, padding=2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(256, 384, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Flatten(),
nn.Linear(6400, 4096),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096,10))
万事俱备,只欠数据:
lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
结果如下: