§ 4 § 4 §4 函数的极值与最大 (小) 值
一、极值判别
函数的极值不仅在实际问题中占有重要的地位,
而且也是函数性态的一个重要特征.
费马定理 (定理 5.3) 已经告诉我们, 若函数 f f f 在点 x 0 x_{0} x0 可导, 且
x 0 x_{0} x0 为 f f f 的极值点, 则 f ′ ( x 0 ) = 0 f^{\prime}\left(x_{0}\right)=0 f′(x0)=0. 这就是说,
可导函数在点 x 0 x_{0} x0 取极值的必要条件是
f ′ ( x 0 ) = 0 f^{\prime}\left(x_{0}\right)=0 f′(x0)=0.
下面讨论充分条件.
定理 6.11 (极值的第一充分条件) 设 f f f 在点 x 0 x_{0} x0 连续, 在某邻域
U ∘ ( x 0 ; δ ) U^{\circ}\left(x_{0} ; \delta\right) U∘(x0;δ) 上可导.
(i) 若当 x ∈ ( x 0 − δ , x 0 ) x \in\left(x_{0}-\delta, x_{0}\right) x∈(x0−δ,x0) 时
f ′ ( x ) ⩽ 0 f^{\prime}(x) \leqslant 0 f′(x)⩽0, 当 x ∈ ( x 0 , x 0 + δ ) x \in\left(x_{0}, x_{0}+\delta\right) x∈(x0,x0+δ)
时 f ′ ( x ) ⩾ 0 f^{\prime}(x) \geqslant 0 f′(x)⩾0, 则 f f f 在点 x 0 x_{0} x0 取得极小值.
(ii) 若当 x ∈ ( x 0 − δ , x 0 ) x \in\left(x_{0}-\delta, x_{0}\right) x∈(x0−δ,x0) 时
f ′ ( x ) ⩾ 0 f^{\prime}(x) \geqslant 0 f′(x)⩾0, 当 x ∈ ( x 0 , x 0 + δ ) x \in\left(x_{0}, x_{0}+\delta\right) x∈(x0,x0+δ)
时 f ′ ( x ) ⩽ 0 f^{\prime}(x) \leqslant 0 f′(x)⩽0, 则 f f f 在点 x 0 x_{0} x0 取得极大值.
证 下面只证 (ii), (i) 的证明可类似地进行.
由定理的条件及定理 6.3 , f 6.3, f 6.3,f 在 ( x 0 − δ , x 0 ) \left(x_{0}-\delta, x_{0}\right) (x0−δ,x0)
上递增, 在 ( x 0 , x 0 + δ ) \left(x_{0}, x_{0}+\delta\right) (x0,x0+δ) 上递减, 又由 f f f 在点
x 0 x_{0} x0 连续, 故对任意 x ∈ U ( x 0 ; δ ) x \in U\left(x_{0} ; \delta\right) x∈U(x0;δ), 恒有
f ( x ) ⩽ f ( x 0 ) . f(x) \leqslant f\left(x_{0}\right) . f(x)⩽f(x0).
即 f f f 在点 x 0 x_{0} x0 取得极大值.
若 f f f 是二阶可导函数, 则有如下判别极值定理.
定理 6.12 (极值的第二充分条件) 设 f f f 在 x 0 x_{0} x0 的某邻域
U ( x 0 ; δ ) U\left(x_{0} ; \delta\right) U(x0;δ) 上一阶可导,在 x x x = x 0 =x_{0} =x0 处二阶可导, 且
f ′ ( x 0 ) = 0 , f ′ ′ ( x 0 ) ≠ 0 f^{\prime}\left(x_{0}\right)=0, f^{\prime \prime}\left(x_{0}\right) \neq 0 f′(x0)=0,f′′(x0)=0.
(i) 若 f ′ ′ ( x 0 ) < 0 f^{\prime \prime}\left(x_{0}\right)<0 f′′(x0)<0, 则 f f f 在 x 0 x_{0} x0
取得极大值.
(ii) 若 f ′ ′ ( x 0 ) > 0 f^{\prime \prime}\left(x_{0}\right)>0 f′′(x0)>0, 则 f f f 在 x 0 x_{0} x0
取得极小值.
证 由条件,可得 f f f 在 x 0 x_{0} x0 处的二阶泰勒公式
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + o ( ( x − x 0 ) 2 ) . f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2 !} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+o\left(\left(x-x_{0}\right)^{2}\right) . f(x)=f(x0)+f′(x0)(x−x0)+2!1f′′(x0)(x−x0)2+o((x−x0)2).
由于 f ′ ( x 0 ) = 0 f^{\prime}\left(x_{0}\right)=0 f′(x0)=0, 因此
f ( x ) − f ( x 0 ) = [ f ′ ′ ( x 0 ) 2 + o ( 1 ) ] ( x − x 0 ) 2 . f(x)-f\left(x_{0}\right)=\left[\frac{f^{\prime \prime}\left(x_{0}\right)}{2}+o(1)\right]\left(x-x_{0}\right)^{2} . f(x)−f(x0)=[2f′′(x0)+o(1)](x−x0)2.
又因 f ′ ′ ( x 0 ) ≠ 0 f^{\prime \prime}\left(x_{0}\right) \neq 0 f′′(x0)=0, 故存在正数
δ ′ ⩽ δ \delta^{\prime} \leqslant \delta δ′⩽δ, 当