Deepseek+飞书多维表格,批量处理数据

接入了DeepSeek后的飞书,强大到我有点陌生。

用了两天接入了DeepSeek R1的飞书,坦率的讲,我已经被彻底折服了,今天,我必须要写一篇文章安利一下。

故事是这样的。

飞书的多维表格,在前天下午接入了满血版的DeepSeek R1。

你可能还没意识到,这意味着啥。

我说一个痛点,就是在此之前,每次当我需要用AI同时处理多篇内容或者各种数据的时候,我都要在N个窗口间反复横跳,究极无敌烦。我甚至为此去配个超长带鱼屏显示器。

什么复制文本、打开AI、等待回答、复制回答、粘贴到表格...这一套操作下来,我的电脑总是开着一堆窗口。

但现在,飞书的多维表格接入了DeepSeek R1后,这个时代的玩法,变了。

真的,直接起飞了。

就拿我现在经常会做的公众号评论分析为例。

因为我其实非常非常看重大家在评论区里面的评论反馈,而且每篇文章几乎最少都有100多条评论,所以最近我有个新增的工作是,每周日会把大家这周给我的评论给爬下来存到一个excel里,然后全部再复盘看一遍。

然后有一个数据我其实一直想看的,就是一级评论(对评论的回复是二级评论)的好评、中性、负面各自的占比。

以前我是把这个Excel文件,直接扔到ChatGPT里,每50~100条分析一次,再把分析结果复制回飞书表格里面整理。这个过程像是在搭积木,你得一块一块地搬,还不能掉。

上周末将近1500多条评论给我干的有点崩溃。

本来刚准备让AI帮我写个Python来解决,结果,飞书的多维表格+DeepSeek来了,直接把内容批量化处理的能力拉到了顶。

我只需要把爬下来的数据导入进多维表格,添加一个DeepSeek字段,设置好分析要求,然后...就没有然后了。所有的文案会自动被分析成标签结果,直接出现在表格里,还可以自动变成可视化的数据仪表盘。

太牛逼了。

话不多说,直接把我自己摸索出来的经验整理成了一个详细教程,保证你看完就会用。

用我上面说的分析文章评论举例。

第一步:现在飞书中,创建一个空白的多维表格。

此时,我们就拥有了一个全新的空白的多维表格了。

关键是设置好基础字段,我一般会删掉后面几列,只保留第一列用来放需要处理的内容。

那在我们这个任务里,自然是用户的所有评论了(包括未精选的)。

至于公众号的评论爬取,也挺简单的,我直接无脑用字节那个类cursor的AI编程工具Trea写了一个油猴脚本来爬。

(这里也安利下Trea,现在可以免费用Claude3.5,香的一笔。)

几分钟对话,你就能搞定一个脚本,然后我用我爬的昨天的那篇文章评论数据做演示。

剔除掉一些被删除的或者违反规定的,最后剩下来了一共267条一级数据,我们直接把这个csv文件导入到飞书多维表格中。

接下来,就要在飞书多维表格中,召唤Deepseek来处理了,点击表格顶部顶部“+”号,把鼠标放在“探索字段捷径处”,搜索“Deepseek”,选择“Deepseek R1”。

这时会弹出配置窗口。

看着好像很复杂的样子,但是不用慌,非常的简单。

1. 修改指令内容,也就是选择哪列需要AI处理的(这里就是“评论内容”列)

2. 设置“自定义要求” ,这就是你给DeepSeek的Prompt。

用人话总结就是,你要让DeepSeek对这一列数据做什么样的处理。

我的Prompt就是一个非常简单的几句话:

我是一个AI公众号作者,我想分析一下我文章下面的评论对我的文章是否认可。请帮我根据我的文章内容分析完以后,输出认可、一般或者不喜欢。我的文章是:XXXXX

然后还有一个设置项是关联账号,这里的关联账号可以不用管,飞书给每个人送了100万的Token,普通用户还是能用一阵子的,如果你的量跟我一样非常大,还是可以绑定自己的火山引擎账号充一些余额的。

价格也是超级便宜,火山引擎是真的卷麻了。

都搞完以后,你就直接点确定就行,他就会嘟嘟的给你生成了,你可以退出去去干别的,一会回来再看。

很快,大概几分钟时间,我的267条数据,就分析完了,真尼玛解放双手,实在是太屌了,而且用推理模型做这种分析任务,准确性简直是绝杀,我之前接过GPT4o来做,但是真的不准,R1牛逼太多了。

无敌。

但是可能有朋友会说了,这玩意准是准,但是也太乱了,根本没有可控性啊,乱七八糟的结构化,这要怎么统计嘛。

确实,推理模型本身Prompt遵循是不咋地,但是山人自有妙计,为啥非要一次性处理完成嘛,我们再加一步不久得了。

再新建一列,在字段类型中一样选择“字段捷径”,然后,选择智能标签。

填上三个标签,然后把字段选成DeepSeek输出结果。

这一步,用人话翻译就是,把前面DeepSeek那些不够结构化的结果,用3个标签来表达。

然后我们直接点确定,超级快,1分钟,标签直接全部打完了。

只能说,太爽了。

### 如何在飞书多维表格中使用DeepSeek #### 整合DeepSeek飞书多维表格的工作流 为了使DeepSeek能够在飞书多维表格环境中有效运作,通常需要借助API接口或是特定插件来实现两者之间的数据交互和功能扩展。这不仅能够提升工作效率,还能确保数据分析过程中的准确性与实时性[^1]。 #### 前期准备工作 对于希望利用DeepSeek增强飞书多维表格功能的用户而言,首先应当完成平台上的注册与登录流程,这是获取访问权限以及后续深入应用的基础步骤[^2]。 #### 实现具体应用场景的方法 - **自然语言查询**:一旦成功接入,可以通过输入自然语言指令的方式,在飞书多维表格内执行复杂的数据筛选、整理任务;例如,“找出销售额最高的产品”,系统会自动解析命令并将结果呈现给用户。 - **自动化脚本编写**:支持开发者基于Python或其他编程语言创建自定义函数或宏程序,进一步定制化处理逻辑,提高灵活性。下面是一个简单的例子,展示了如何调用DeepSeek API来进行批量文本分类: ```python import requests def classify_text(text_list, api_key='your_api_key'): url = "https://api.deepseek.com/v1/classify" headers = {"Authorization": f"Bearer {api_key}"} response = requests.post(url, json={"texts": text_list}, headers=headers) return response.json() ``` 此段代码允许使用者向DeepSeek发送待分析的文字列表,并接收经过模型预测后的类别标签作为返回值。 #### 应用实例展示 假设某企业正在寻找一种方法来优化客户服务体验,那么可以考虑将DeepSeek集成到现有的CRM系统——即在此案例中为飞书多维表格之中。通过对客户反馈邮件内容的情绪倾向进行量化评估,帮助客服团队更快捷准确地响应客户需求,从而改善整体服务质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值