第十八部分 高清修复
** **
18.1 高清修复的概念
高清修复(Hi-Res Fix)是用于提升图像分辨率和细节的技术。在生成图像时,初始的低分辨率图像会通过放大算法和细节增强技术被转换为高分辨率版本。这种方法能够显著提高图像的清晰度和视觉效果,特别适用于需要精细细节的场景。
18.2 高清修复的**三种方案**
如何让图片更清晰、更有细节?
-
文生图:高分辨率修复(Hi-Res Fix)
过程描述:
-
步骤1:生成低分辨率版本(尺寸:750*450)
[示例]宽度:750,高度:450[示例]模型(Checkpoint):AnythingXL_v50.safetensors[示例]终止层数(CLIP):2[示例]采样方法(Sampler):Euler[示例]迭代步数(Steps):32[示例]提示词引导系数(CFG Scale):12[示例]随机数种子(Seed):1528633348[示例]正向提示词:(white background,:1.5)1gril,clear face,High definition,white background,paint effect,long hair girl with white mixed with rainbow color flowing hair and starry color clothes,Beautiful hair,white hrie,rainbow hair,[示例]反向提示词:lowres,bad anatomy,bad hands,text,error,missing fngers,extra digt,fewer digits,cropped,wort quality,low quality,normal quality,jpeg artifacts,signature,watermark,username,blurry,bad feet,nsfw,Deformed body,spectacles,Deformed face,blue face,dark background,black background,Rainbow backgroundm,cover the body,
勾选“高分辨率修复(Hires.fix)”,放大倍数根据你的需要选择,放大算法可以根据模型推荐或自行尝试后进行选择,一般来说二次元图片可采用“R-ESRGAN 4x+Anime6B”、真实图片可采用“R-ESRGAN 4x+”,高清迭代步数设置为0(表示沿用原始迭代步数),设置重绘幅度(如希望接近原始画面,不建议超过0.5)
*关于R-ESRGAN 4x+*
R-ESRGAN 4x+是一种图像超分辨率重建算法,全称为“Real-Time Enhanced Super-Resolution Generative Adversarial Network 4x+”。这是基于生成式对抗网络(GAN)的一种算法,是ESRGAN(Enhanced Super-Resolution Generative Adversarial Networks)的改进版本之一。R-ESRGAN 4x+通过引入残差连接和递归结构,优化了ESRGAN的生成器网络,并使用GAN进行训练。这使得R-ESRGAN 4x+在提高图像分辨率的同时,能够增强图像的细节和纹理,生成的图像质量相比传统方法更高。它在多个图像增强任务中表现出色,例如图像超分辨率、图像去模糊和图像去噪等。
-
步骤2:放大修复
-
步骤3:生成高分辨率图片
-
点击生成边生成了经过高分辨率修复放大后的图片了
-
高分辨率修复*适用于文生图的普遍细节优化,可以克服直接生成高分辨率图片时的细节错误问题,但其并不能突破显存限制生成高于你显卡性能所能达到的最高分辨率图片。高分辨率修复需要更多的GPU运算,生成速度比较慢,所以可以在低分辨率的情况下得到自己满意的图片后,通过固定随机数种子后来进行高分辨率修复得到一张高清大图。*
2. 图生图
“分区域画,拼到一起”。图生图本身就是一种高清修复,当你导入一张图片后,设置新的分辨率,SD就会根据新的分辨率模仿原图重新画一张图。
我以一张原始尺寸为450*658的图片为例:
过程描述:
-
步骤1:**设置图生图放大算法**
-
在设置中,点击侧边菜单中的“后期处理-放大”,在“图生图放大算法”中选择算法后,按上方的“保存设置”。
-
-
步骤2:Upscale放大脚本
-
在图生图中导入需要放大的图片,选择合适的模型,按小三角按钮读取一下图片的原始尺寸,重绘幅度同样建议不高于0.5。
-
在下方的脚本选项中选择“SD Upscale”,选择合适的放大倍数,放大算法选择参考我之前文生图中的说明。分块重叠像素宽度设置一个合适的值,我这里选择64
-
-
步骤3:根据分块重叠像素宽带调整重绘尺寸的值
-
将你设置好的分块重叠像素宽的值加到你重绘尺寸上的值,然后重新输入一个数值。(我这里原图是450*658,那宽度就是450+64=514,长度就是658+64=722)
-
-
步骤4:生成图片
-
点击生成,便会生成一张分辨率是原始尺寸两倍大小的高清放大图了。而且它是通过分区域画,后拼到一起的图,通过这个方式高清放大的图可以突破我们显卡显存的上限,生成出高于分辨率上限4倍的图像尺寸。
-
而我们设置的分块重叠像素宽度值就是用来平滑过渡这四块区域的衔接处的。
-
3. 生成后处理:后期处理
简单放大,随时可用
过程描述:
-
步骤1:*设置放大算法*
-
参考之前教程的建议,选择合适的放大算法,选择你希望的缩放比例。(这里可以同时利用两种放大算法,并设置算法2的强度后来提高图像放大的效果。)
-
-
步骤2:*生成图片*
-
点击生成,便能快速生成一张放大的图片了。
-
虽然生成的速度要比前两种方法快,但整体的精细度并不如前两种采用重绘的方式来放大的效果好。
-
** **
通过以上步骤,你可以生成高质量的高分辨率图像,满足各种需求。从模型生成初始图像,再到应用高清修复技术,可以显著提升图像的清晰度
这里直接将该软件分享出来给大家吧~
1.stable diffusion安装包
随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。
最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本。
2.stable diffusion视频合集
我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。
3.stable diffusion模型下载
stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。
4.stable diffusion提示词
提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。
5.SD从0到落地实战演练
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。
这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!