内容简介
量子神经网络是基于量子计算构建的神经网络模型,研究人员期待两者的结合能加速学习的过程,降低资源的消耗,解决以往难以解决的问题。近年来,尽管量子神经网络的应用研究如火如荼,但是鲜少有文章从数学的角度解释量子神经网络背后的数学逻辑。本次,我将分享关于量子神经网络的通用近似定理的研究。该定理刻画了量子神经网络近似任意连续函数的能力。同时,此次分享的多篇论文从不同的角度描述量子神经网络如何实现通用近似定理,这将帮助我们更好地理解并设计出更好的量子神经网络算法。
相关论文1
标题:Quantum circuit learning
作者:K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii
期刊:Phys. Rev. A 98, 032309(2018)
相关论文2
标题:Universal Approximation Property of Quantum Machine Learning Models in Quantum-Enhanced Feature Spaces
作者:Takahiro Goto, Quoc Hoan Tran, and Kohei Nakajima
期刊:Phys. Rev. Lett. 127, 090506(2021)
相关论文3
标题:Effect of data encoding on the expressive power of variational quantum-machine-learning models
作者:Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer
期刊:Phys. Rev. A 103, 032430(2021)
01 量子神经网络简介
量子神经网络是基于量子计算所构建的新型神经网络模型。研究人员期待两者的结合能加速学习的过程,降低资源的消耗,解决以往难以解决的问题。近年来,量子神经网络的发展如火如荼,量子前馈神经网络,量子卷积神经网络,量子循环神经网络,量子胶囊神经网络,量子图神经网络等相继提出,并在一些任务上取得了成功。
在本文中,量子神经网络代指基于变分量子线路的量子前馈神经网络,即网络的结构与经典前馈神经网络类似,由一个输入层(输入数据),多个隐藏层(处理数据)以及一个输出层(输出结果)组成。在量子上,这样的网络结构被类似地映射为,数据编码层(编码经典数据为量子态),多层可变参数的量子线路算子(处理数据),以及最后的量子测量操作(输出结果)。
通常,量子神经网络可以被定义为如下结构
其中,|ψ〉表示量子计算机的初始态,通常置为|0〉,
将数据
映射为量子态,
表示一个由可变参数
决定的酉变换,
是一些可观测量。我们将量子测量的结果作为量子神经网络的输出值,并通过优化调整可变参数
使得量子神经网络的能够完成预定的任务。
经典和量子的前馈神经网络尽管有着相似的结构,但是其细节存在诸多不同,并不能直接认为两者是等价的。在经典上,前馈神经网络被证明能近似任意的连续函数(通常指输入和输出都在欧几里得空间中的连续函数),这种性质被归纳为万能近似定理(Universal approximation theorem),这解释了为什么神经网络在不同的问题中都有着不错的表现。在这一定理中,激活函数有着不可或缺的作用(可以简单地认为,前馈神经网络缺少激活函数就是一个线性函数)。而激活函数的主要作用就是提供非线性。而非线性在量子神经网络中是稀缺的,例如
从上式中可以看出量子神经网络的输出结果对于
而言是一个线性函数。因此我们简单地改变
和
并不会为量子神经网络增加非线性,而非线性的主要来源就是数据映射部分
。
因此,在量子神经网络面临缺少非线性的天然劣势下,量子神经网络仍否具有通用近似性是一个值得研究的问题,并且对于我们理解量子神经网络有着非常关键的作用。
因此如何提供足够的非线性,使得量子神经网络拥有足够的能力实现通用近似性是一个非常关键的问题。
02 Quantum Circuit Learning
在这篇文章中,作者提出可以通过在多个量子子系统中重复编码
的信息,从而在由这些子系统张量而成的复合系统中自然地得到变量
的高次项。例如,这篇文中提到的,由
个单量子比特选择门
,分别作用到初始态
,得到如下量子态
不难看出,其中包含
的
次项
。作者提到,如果想要通过局部测量提取到
的
次项的值,需要通过量子纠缠算子将局部测量算子变为纠缠的非局部测量算子,从而得到包含