关注微信公众号"量子计算HiQ"查看更多论文分享和学术活动,投稿请联系小助手“LLT66TT”
内容简介
轨迹重建是高能对撞物理中模式识别的核心组成部分。此过程涉及大量的计算资源,尤其是在高粒子多重性的条件下。而这正是诸如高亮度大型强子对撞机(High Luminosity Large Hadron Collider, HL-LHC)和超级质子-质子对撞机(Super Proton-Proton Collider, SPPC)等未来对撞机预期的运行环境。轨迹重建问题可以被形式化为无约束的二次二元优化(Quadratic Unconstrained Binary Optimization, QUBO)问题,针对此类问题,已有诸多量子算法被提出并在量子模拟器及实际量子硬件上得到了验证和评估。模拟分岔算法(Simulated Bifurcation Algorithms)是一类由量子退火启发而来的算法,其性能已被证明足以与其他Ising模型求解器相匹敌。在本研究中,我们使用在MindSpore Quantum库中实现的模拟分岔算法,展示其能够有效地应用于解决粒子轨迹重建问题。这些算法在经典计算架构上运行,并且特别适合于使用GPU并行处理,从而能够以极高的速度处理大规模数据集。我们的实验结果显示,模拟分岔算法在轨迹重建的效率和纯度方面达到了与模拟退火算法相当甚至在某些情况下的更优表现,同时其运行时间相比传统方法最多可减少四个数量级。上述成果表明,QUBO模型结合量子退火启发的算法对于现今及未来的粒子物理实验中的轨迹重建任务具有重要的潜在价值。
相关论文