
-
CEEMDAN分解:
CEEMDAN,即完全集合经验模态分解,是一种用于处理非线性和非平稳信号的方法。它通过自适应的方式将复杂信号分解为一系列具有不同频率特性的固有模态函数(IMF)。每个IMF都代表原始信号中的一个固有成分,这有助于我们更好地理解和分析信号的组成。 -
样本熵(PE)的应用:
样本熵是一种衡量时间序列复杂性的统计量,它可以反映时间序列中新模式生成的速率或者出现新信息的频率。在CEEMDAN+PE+小波阈值降噪重构中,样本熵被用作确定阈值的一个重要指标。通过对每个IMF进行样本熵的计算,我们可以选择适当的阈值来区分信号中的噪声和有用信息。 -
小波阈值去噪:
小波阈值去噪是一种在小波变换基础上进行的信号去噪方法。它首先通过小波变换将信号分解为不同频率的小波系数,然后根据设定的阈值对小波系数进行筛选和处理。具体来说,小于阈值的小波系数被认为是噪声成分,会被置零或进行其他处理;而大于阈值的小波系数则被认为是信号的有效成分,会被保留下来。通过这种方式,可以有效地去除信号中的噪声。 -
对信号采用ICCEMDAN进行分解后判定分解分量的排列熵值,将大于阈值的分量通过小波软/硬阈值降噪处理,随后进行重构。
综上所述,CEEMDAN+PE+小波阈值降噪重构涉及的原理主要包括信号的CEEMDAN分解、样本熵的应用以区分噪声和有用信息、小波阈值去噪以去除噪声,以及最后的信号重构过程。这些原理共同构成了该方法的核心,使得它能够在处理非线性和非平稳信号时表现出色,有效地去除噪声并保留有用信息。