CEEMDAN(自适应噪声完备集合经验模态分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵

CEEMDAN(自适应噪声完备集合经验模态分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵

代码获取戳此处代码获取戳此处代码获取戳此处代码获取戳此处代码获取戳此处代码获取戳此处代码获取戳此处代码获取戳此处代码获取戳此处代码获取戳此处代码获取戳此处代码获取戳此处


对序列信号进行CEEMDAN(自适应噪声完备集合经验模态)分解后计算
各分解分量峭度值、能量熵、近似熵、模糊熵、排列熵、多尺度排列熵、样本熵,程序实用性高,
适合故障诊断、功率预测等研究方向信号处理。并输出分解图、包络图、包络谱图、峭度值图、频谱图。

下面对所涉及算法及运行效果进行介绍

好的,下面我会为您详细介绍这些算法和概念:

1. CEEMDAN (自适应噪声完备集合经验模态分解)

CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)是一种改进的经验模态分解(EMD)方法。EMD是一种自适应的信号分解方法,用于将复杂的信号分解为一系列固有模态函数(IMFs)。然而,EMD存在模态混叠的问题,即不同的IMF可能包含相似频率的成分。

为了解决这个问题,CEEMDAN引入了自适应噪声的概念。在每次EMD分解后,向信号中添加白噪声,然后再次进行EMD分解。由于白噪声的随机性,每次分解的结果都会略有不同。通过对多次分解的结果进行平均,可以减少模态混叠现象,并得到更准确的IMF。

CEEMDAN算法的主要步骤如下:

  1. 初始化剩余信号为原始信号。
  2. 对于每个IMF,执行以下步骤:
    1. 向剩余信号中添加自适应噪声。
    2. 对加噪后的信号进行EMD分解,得到一个IMF。
    3. 从剩余信号中减去该IMF。
  3. 重复步骤2,直到剩余信号满足停止准则(如剩余信号的能量小于某个阈值)。
  4. 对所有IMF进行平均,得到最终的分解结果。
  5. 分解结果及包络图

2. 峭度值 (Kurtosis)

峭度值是一种统计量,用于描述数据的分布形状。对于正态分布,峭度值为3。峭度值大于3的分布比正态分布更尖,而小于3的分布则更平坦。峭度值在信号处理中常用于评估信号的脉冲性或峰值分布。

输出峭度值对比及包络谱图

3. 能量熵 (Energy Entropy)

能量熵是一种基于信号能量分布的熵度量。它计算信号在不同频率或时间尺度上的能量分布,并根据这些分布计算熵值。能量熵用于评估信号的复杂性和不规则性。

4. 近似熵 (Approximate Entropy)

近似熵是一种衡量时间序列复杂性的统计量。它计算了时间序列中相似模式出现的概率。近似熵值越小,表示时间序列越规则;值越大,表示时间序列越复杂。近似熵常用于评估信号的随机性

5. 模糊熵 (Fuzzy Entropy)

模糊熵是近似熵的一种扩展,它允许在比较时间序列中的模式时引入一定的模糊性。通过调整模糊参数,可以控制模式之间的相似度。模糊熵用于评估时间序列的复杂性和规律性。

6. 排列熵 (Permutation Entropy)

排列熵是一种基于时间序列符号化表示的熵度量。它将时间序列划分为一系列符号序列,并根据这些符号序列计算熵值。排列熵用于评估时间序列的复杂性和规律性。

7. 多尺度排列熵 (Multiscale Permutation Entropy)

多尺度排列熵是排列熵的一种扩展,它考虑了时间序列在不同时间尺度上的复杂性。通过对时间序列进行多尺度分析(如小波变换或滑动窗口方法),可以计算每个尺度上的排列熵,并综合这些熵值以评估整个时间序列的复杂性。

8. 样本熵 (Sample Entropy)

样本熵是一种衡量时间序列复杂性的统计量,与近似熵类似。它计算了时间序列中相似模式出现的概率,但与近似熵不同的是,样本熵在计算过程中去除了自身匹配的情况。样本熵用于评估时间序列的复杂性和规律性。

这些算法和概念在信号处理、生物医学工程、故障诊断等领域有广泛的应用。通过对信号进行分解和复杂性分析,可以更好地理解信号的特性,从而进行有效的信号处理和分析。

<think>嗯,用户想了解或使用CEEMDAN算法,也就是自适应噪声完备经验模态分解。我需要先回忆一下CEEMDAN的基本概念和原理。根据引用[1],CEEMDAN是为了提高EMD的分解精度,通过自适应估计噪声分量,将其从信号中分离出来。这和传统的EEMD有什么不同呢?EEMD是加入高斯白噪声然后多次平均,而CEEMDAN可能改进了噪声添加的方式,使得分解更彻底,模态混叠减少。 接下来,用户可能需要知道CEEMDAN的具体步骤。根据引用[3],CEEMDAN属于噪声辅助的分解方法,可能包括多次添加噪声分解、集成。那具体步骤应该是:首先对原始信号添加不同的噪声,进行EMD分解,得到各阶模态,然后通过自适应噪声调整,逐步提取模态,直到满足停止条件。 然后,用户可能关心如何实现CEEMDAN。引用[4]提到了EEMD的MATLAB代码,但CEEMDAN可能类似,不过噪声添加的方式不同。需要确保分解过程中每次添加的噪声自适应的,可能是在每一阶模态分解后调整噪声水平。另外,引用[2]提到WOA-ICEEMDAN结合了鲸鱼算法优化参数,说明CEEMDAN的参数设置可能对结果有影响,比如噪声标准差、集成次数等。 应用方面,引用[1]和[3]都提到CEEMDAN用于信号去噪和多元时间序列预测。用户可能想了解实际应用案例,比如ECG信号去噪,或者结合其他方法如VMD、K均聚类进行更复杂的分析。需要举例说明这些应用场景,并引用相关文献。 用户可能还会遇到问题,比如模态分解不完全,参数设置不当导致过分解或欠分解。这时需要建议调整噪声水平或集成次数,或者结合其他算法优化参数,如引用[2]中的鲸鱼算法。 最后,生成相关问题时要覆盖原理、实现步骤、参数调整、应用场景和常见问题解决方法。确保问题能引导用户深入理解CEEMDAN的不同方面,并帮助他们在实际应用中解决问题。</think>### 基于CEEMDAN算法的实现与应用详解 **CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)**是一种改进的经验模态分解(EMD)算法,旨在解决传统EMD的模态混叠问题,并通过自适应噪声注入提高分解精度。以下从算法原理、实现步骤、应用场景及代码示例展开说明: --- #### **1. CEEMDAN算法原理** - **核心思想**:通过自适应地添加白噪声分量,并在每次分解后对残差信号进行噪声调整,逐步提取本征模态函数(IMFs)。与EEMD(集成经验模态分解)相比,CEEMDAN减少了噪声残留和模态冗余[^1][^3]。 - **关键公式**: $$ x(t) = \sum_{k=1}^K \text{IMF}_k(t) + r_K(t) $$ 其中$x(t)$为原始信号,$\text{IMF}_k$为第$k$阶模态分量,$r_K$为最终残差。 --- #### **2. 实现步骤** 1. **初始化**:设定噪声(如$Nstd=0.2$)和集成次数(如$Ne=100$)。 2. **噪声注入**:对原始信号$x(t)$添加自适应噪声,生成多个含噪信号: $$ x^{(i)}(t) = x(t) + \beta \cdot w^{(i)}(t) $$ 其中$w^{(i)}(t)$为第$i$次噪声,$\beta$为噪声系数。 3. **逐阶分解**: - 对每个含噪信号进行EMD,提取第一阶模态$\text{IMF}_1^{(i)}$。 - 计算第一阶模态的均$\text{IMF}_1 = \frac{1}{Ne} \sum_{i=1}^{Ne} \text{IMF}_1^{(i)}$。 - 更新残差$r_1(t) = x(t) - \text{IMF}_1(t)$,并重复上述过程提取后续模态。 4. **终止条件**:当残差为单调函数或无法进一步分解时停止[^4]。 --- #### **3. 应用场景** 1. **信号去噪**:如ECG信号中分离噪声分量,结合样本熵(SE)筛选有效模态[^1]。 2. **时间序列预测**:分解多元信号为多个IMFs后,结合VMD和Transformer进行特征提取与预测[^3]。 3. **机械故障诊断**:从振动信号中提取故障特征频率。 --- #### **4. MATLAB代码示例(简化版)** ```matlab % 参数设置 Nstd = 0.2; % 噪声标准差系数 Ne = 100; % 集成次数 max_IMF = 8; % 最大模态数 % 导入信号 data = load('signal.mat'); x = data.x; % CEEMDAN分解 [IMFs, residual] = ceemdan(x, Nstd, Ne, max_IMF); % 绘制模态分量 figure; for k = 1:size(IMFs,1) subplot(size(IMFs,1)+1,1,k); plot(IMFs(k,:)); title(['IMF ', num2str(k)]); end subplot(size(IMFs,1)+1,1,size(IMFs,1)+1); plot(residual); title('Residual'); ``` --- #### **5. 常见问题与优化** - **模态混叠残留**:增大集成次数$Ne$或调整噪声系数$Nstd$。 - **计算效率低**:使用并行计算加速集成过程。 - **参数自适应**:结合优化算法(如WOA[^2])动态选择$Nstd$和$Ne$。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值